Cho hình lăng trụ tứ giác: ABCD.A'B'C'D'. Mặt phẳng (P) cắt các cạnh bên AA', BB', CC', DD' lần lượt tại I, K, L, M. xét các véctơ có các điểm đầu là các điểm I, K, L, M và có các điểm cuối là các đỉnh của hình lăng trụ. hãy chỉ ra các véctơ:
a) Các véctơ cùng phương với \(\overrightarrow{IA}\);
b) Các véctơ cùng hướng với \(\overrightarrow{IA}\);
c) Các véctơ ngược hướng với \(\overrightarrow{IA}\).
Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng:
a) \(\overrightarrow{AB} + \overrightarrow{B'C'} + \overrightarrow{DD'} = \overrightarrow{AC'};\)
b) \(\overrightarrow{BD} - \overrightarrow{D'D} - \overrightarrow{B'D'} = \overrightarrow{BB'};\)
c) \(\overrightarrow{AC} + \overrightarrow{BA'} + \overrightarrow{DB} + \overrightarrow{C'D} = \overrightarrow{0}.\)
Cho hình bình hành ABCD. Gọi S là một điểm nằm ngoài mặt phẳng chứa hình bình hành. Chứng minh rằng: \(\overrightarrow{SA}\) + \(\overrightarrow{SC}\) = \(\overrightarrow{SB}\) + \(\overrightarrow{SD}\).
Cho hình tứ diện ABCD. Gọi M và N lần lượt là trủng điểm của AB và CD. Chứng minh rằng:
a) \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right );\)
b) \(\overrightarrow{MN}=\frac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right).\)
Cho hình tứ diện ABCD. Hãy xác định hai điểm E, F sao cho:
a) \(\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD};\)
b) \(\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AD}.\)
Cho hình tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Chứng minh rằng: \(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=3\overrightarrow{DG}.\)
Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm của đoạn thẳng MN và P là một điểm bất kì trong không gian. Chứng minh rằng:
a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
b) \(\overrightarrow{PI}=\frac{1}{4}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD})\)
Cho hình lăng trụ tam giác ABC.A'B'C' có \(\overrightarrow{AA}\) = \(\overrightarrow{a}\), \(\overrightarrow{AB}\) = \(\overrightarrow{b}\), \(\overrightarrow{AC}\) = \(\overrightarrow{c}\). Hãy phân tích (hay biểu thị véctơ \(\overrightarrow{B'C}\), \(\overrightarrow{BC'}\) qua các véctơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\).
Cho tam giác ABC. Lấy điểm S nằm ngoài mặt phẳng (ABC). Trên đoạn SA lấy điểm M sao cho \(\overrightarrow{MS}\) = \(-2\overrightarrow{MA}\) và trên đoạn BC lấy điểm N sao cho \(\overrightarrow{NB}=-\frac{1}{2}\overrightarrow{NC}.\) Chứng minh rằng ba véctơ \(\overrightarrow{AB}\), \(\overrightarrow{MN}\), \(\overrightarrow{SC}\) đồng phẳng.
Cho hình hộp ABCD.EFGH. Gọi K là giao điểm của AH và DE, I là giao điểm của BH và DF. Chứng minh ba véctơ \(\overrightarrow{AC}, \overrightarrow{KI}, \overrightarrow{FG}\) đồng phẳng.
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa các cặp vectơ sau đây:
a) \(\overrightarrow{AB}\) và \(\overrightarrow{EG};\) b) và
c)
và
Cho hình tứ diện ABCD.
a) Chứng minh rằng: \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0.\)
b) Từ đẳng thức trên hãy suy ra rằng nếu tứ diện ABCD có AB ⊥ CD và AC ⊥ DB thì AD ⊥ BC.
a) Trong không gian nếu có hai đường thẳng a và b cùng vuông góc với đường thẳng c thì a và b có song song với nhau không?
b) Trong không gian nếu đường thẳng a vuông góc với đương thẳng b và đường thẳng b vuông góc với đường thẳng c thì a có vuông góc với c không?
Trong không gian cho hai tam giác đều ABC và A'B'C' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, B'C, C'A, Chứng minh rắng:
a) AB ⊥ CC';
b) Tứ giác MNPQ là hình chữ nhật.
Cho hình chóp tam giác S.ABC có SA = SB = SC và có \(\widehat{ABC}= \widehat{BSC}=\widehat{CSA}.\) Chứng minh rằng SA ⊥ BC, SB ⊥ AC, SC ⊥ AB.
Trong không gian cho hai hình vuông ABCD và ABC'D' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm O và O'. Chứng minh rằng AB ⊥ OO' và tứ giác CDD'C' là hình chữ nhật.
Cho S là diện tích tam giác ABC. Chứng minh rằng: \(S=\frac{1}{2}\sqrt{\overrightarrow{AB}^{2}.\overrightarrow{AC}^{2}-(\overrightarrow{AB}.\overrightarrow{AC})^{2}}.\)
Cho tứ diện ABCD có AB = AC = AD và \(\widehat{BAC}=\widehat{BAD}=60^{0}.\) Chứng minh rằng:
a) AB ⊥ CD;
b) Nếu M, N lần lượt là trung điểm của AB và CD thì MN ⊥ AB và MN ⊥ CD.
Cho mặt phẳng \((\alpha )\) và hai đường thẳng a, b. Các mệnh đề sau đây đúng hay sai?
a) Nếu \(a // (\alpha )\), \(b\perp (\alpha )\) thì \(a \perp b\).
b) Nếu \(a // (\alpha )\), \(b\perp a\) thì \(b\perp (\alpha )\).
c) Nếu \(a // (\alpha )\), \(b//(\alpha )\) thì \(b // a\).
d) Nếu \(a \perp (\alpha ),\) \(b\perp a\) thì \(b // (\alpha )\).
Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung đáy BC. Gọi I là trung điểm của cạnh BC.
a) Chứng minh rằng BC vuông góc với mặt phẳng (ADI)
b) Gọi AH là đường cao của tam giác ADI, chứng minh rằng AH vuông góc với mặt phẳng (BCD).
Cho hình chóp S.ABCD có đáy là hình thoi ABCD tâm O và có SA = SB = SC = SD. Chứng minh rằng:
a) Đường thẳng SO vuông góc với mặt phẳng (ABCD)
b) Đường thẳng AC vuông góc với mặt phẳng (SBD) và đường thẳng BD vuông góc với mặt phẳng (SAC)
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc. Gọi H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC). Chứng minh rằng:
a) H là trực tâm của tam giác ABC;
b) \(\frac{1}{OH^{2}}=\frac{1}{OA^{2}}+\frac{1}{OB^{2}}+\frac{1}{OC^{2}}.\)
Trên mặt phẳng \((\alpha )\) cho hình bình hành ABCD. Gọi O là giao điểm của AC và BD. S là một điểm nằm ngoài mặt phẳng \((\alpha )\) sao cho SA = SC, Sb = SD. Chứng minh rằng:
a) \(SO \perp (\alpha )\);
b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc mặt phẳng (SOH).
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có cạnh SA vuông góc với mặt phẳng (ABCD). Gọi I và K là hai điểm lần lượt lấy trên hai cạnh SB và SD sao cho \(\frac{{SI}}{{SB}} = \frac{{SK}}{{SD}}\). Chứng minh:
a) BD vuông góc với SC;
b) IK vuông góc với mặt phẳng (SAC).
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có tam giác ABC vuông tại B. Trong mặt phẳng (SAB) kẻ từ AM vuông góc với SB tại M. Trên cạnh SC lấy điểm N sao cho \(\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}}\) Chứng minh rằng:
a) \(BC \perp (SAC)\) và \(AM \perp (SBC)\);
b) \(SB \perp AN\).
Cho điểm S không thuộc cùng mặt phẳng (α) có hình chiếu là điểm H. Với điểm M bất kì trên (α) và M không trùng với H, ta gọi SM là đường xiên và đoạn HM là hình chiếu của đường xiên đó. Chứng minh rằng:
a) Hai đường thẳng xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau;
b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại đường xiên nào có hình chiếu lớn hơn thì lớn hơn.
Cho ba mặt phẳng \((\alpha ), (\beta ), (\gamma )\), những mệnh đề nào sau đây đúng?
a) Nếu \((\alpha )\perp (\beta )\) và \((\alpha ) // (\gamma )\) thì \((\beta ) ⊥ (\gamma )\).
b) Nếu \((\alpha ) \perp (\beta )\) và \((\alpha ) \perp (\gamma )\) thì \((\beta ) // (\gamma )\).
Cho hai mặt phẳng \((\alpha ), (\beta )\) vuông góc với nhau. Người ta lấy trên giao tuyến \(\Delta\) của hai mặt phẳng đó hai điểm A và B sao cho AB = 8cm. Gọi C là một điểm trên \(\alpha\) và D là một điểm trên \((\beta )\) sao cho AC và BD cùng vuông góc với giao tuyến \(\Delta\) và AC = 6cm, BD = 24cm. Tính độ dài đoạn CD.
Trong mặt phẳng (α) cho tam giác ABC vuông ở B. Một đoạn thẳng AD vuông góc với \((\alpha )\) tại A. Chứng minh rằng:
a) (ABD) là góc giữa hai mặt phẳng (ABC) và (DBC)
b) HK // BC với H và K lần lượt là giao điểm của DB và DC với mp(P) đi qua A và vuông góc với DB.
c) HK // BC với H và K lần lượt là giao điểm của DB và DC với mp(P) đi qua A và vuông góc với DB.
Cho hai mặt phẳng \((\alpha )\), \((\beta )\) cắt nhau và một điểm M không thuộc \((\alpha )\) và \((\beta )\). Chứng minh rằng qua điểm M có một và chỉ một mặt phẳng (P) vuông góc với \((\beta )\)và \((\beta )\). Nếu \((\alpha ) // (\beta )\) thì kết quả trên sẽ thay đổi như thế nào?
Cho hình chóp S.ABCD có đáy ABCD là một hình thoi cạnh a và có SA = SB = SC = a. Chứng minh rằng:
a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD);
b) Tam giác SBD là tam giác vuông.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = b, CC' = c.
a) Chứng minh rằng mặt phẳng (ADC'B') vuông góc với mặt phẳng (ABB'A').
b) Tính độ dài đường chéo AC' theo a, b, c.
Tính độ dài đường chéo của một hình lập phương cạnh a.
Cho hình chóp tam giác đều S.ABC có SH là đường cao. Chứng minh \(SA \perp BC\) và \(SB \perp AC\).
Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và cạnh đáy đều bằng a. Gọi O là tâm của hình vuông ABCD.
a) Tính độ dài đoạn thẳng SO.
b) Gọi M là trung điểm của đoạn SC. Chứng minh hai mặt phẳng (MBD) và (SAC) vuông góc với nhau.
c) Tính độ dài đoạn OM và tính góc giữa hai mặt phẳng (MBD) và (ABCD).
Cho hình chóp S.ABCD có đáy ABCD là một hình thoi tâm I cạnh a và có góc A bằng 600 cạnh \(SC=\frac{a\sqrt{6}}{2}\) và SC vuông góc với mặt phẳng (ABCD).
a) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC).
b) Trong tam giác SCA kẻ IK vuông góc với mặt phẳng (SAC) tại K. Hãy tính độ dài IK
c) Chứng minh \(\widehat {BKD} = {90^0}\) và từ đó suy ra mặt phẳng (SAB) vuông góc với mặt phẳng (SAD).
Trong các mệnh đề sau đây, mệnh đề nào đúng?
a) Đường thẳng \(\Delta\) là đường thẳng vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông gó với a và \(\Delta\) vuông góc với b;
b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P);
c) Gọi \(\Delta\) là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì ∆ là giao tuyến của hai mặt phẳng (a, \(\Delta\)) va (b, \(\Delta\));
d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b;
e) Đường vuông góc chung \(\Delta\) của hai đường thẳng chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia.
Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC). Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC.
a) Chứng minh ba đường thẳng AH, SK, BC đồng quy.
b) Chứng minh rằng SC vuông góc với mặt phẳng (BHK) và HK vuông góc với mặt phẳng (SBC).
c) Xác định đường vuông góc chung của BC và SA
Cho hình lập phương ABCD.A'B'C'D'cạnh a. Chứng minh rằng các khoảng cách từ các điểm B, C, D, A', B', D' đến đường chéo AC' đều bằng nhau. Tính khoảng cách đó.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC= b, CC' = c.
a) Tính khoảng cách từ B đến mặt phẳng (ACC'A').
b) Tính khoảng cách giữa hai đường thẳng BB' và AC'.
Cho hình lập phương ABCD.A'B'C'D' cạnh a.
a) Chứng minh rằng B'D vuông góc với mặt phẳng (BA'C').
b) Tính khoảng cách giữa hai mặt phẳng (BA'C') và (ACD').
c) Tính khoảng cách giữa hai đường thẳng BB' vad AC'.
Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh AB và CD của tứ diện ABCD là đường vuông góc chung của AB và CD thì AC = BD và AD = BC.
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Tính khoảng cách từ S tới mặt đáy (ABC).
Cho tứ diện đều ABCD cạnh a. Tính khoảng cách giữa hai cạnh đối diện của tứ diện.
Trong mặt phẳng tọa độ Oxy, cho các điểm A(1;1),B(0;3),C(2;4). Xác định ảnh của tam giác ABC qua các phép biến hình sau.
(a) Phép tịnh tiến theo vecto \(\vec{v} = (2;1)\).
(b) Phép đối xứng qua trục Ox
(c) Phép đối xứng qua tâm I(2;1).
(d) Phép quay tâm O góc 90o.
(e) Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trụ Oy và phép vị tự tâm O tỉ số k = -2
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H tương ứng là trọng tâm và trực tâm của tam giác, các điểm A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB.
a) Tìm phép vị tự F biến A, B, C tương ứng thành A’, B’, C’
b) Chứng minh rằng O, G, H thẳng hàng.
c) Tìm ảnh của O qua phép vị tự F.
d) Gọi A”, B”, C” lần lượt là trung điểm của các đoạn thẳng AH, BH, CH; A1, B1, C1 theo thứ tự là giao điểm thứ hai của các tia AH, BH, CH với đường tròn (O); A1’, B1’, C1’ tương ứng là chân các đường cao đi qua A, B, C. Tìm ảnh của A, B, C, A1, B1, C1 qua phép vị tự tâm H tỉ số \(\frac{1}{2}\)
e) Chứng minh chín điểm A’, B’, C’, A”, B”, C”, A1’, B1’, C1’ cùng thuộc một đường tròn (đường tròn này gọi là đường tròn Ơ-le của tam giác ABC)
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Gọi M là trung điểm của đoạn AB, E là giao điểm của hai cạnh của hình thang ABCD và G là trọng tâm của tam giác ECD.
a) Chứng minh rằng bốn điểm S, E, M, G cùng thuộc một mặt phẳng (α) và mặt phẳng này cắt cả hai mặt phẳng (SAC) và (SBD) theo cùng một giao tuyến d.
b) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBC).
c) Lấy một điểm K trên đoạn SE và gọi C' = SC ∩ KB, D'= SD ∩ KA. Chứng minh rằng hai giao điểm của AC' và BD' thuộc đường thẳng d nói trên.
Cho hình lăng trụ tứ giác ABCD.A’B’C’D’ có E, F, M và N lần lượt là trung điểm của AC, BD, AC’ và BD’. Chứng minh MN = EF.
Cho hình lập phương ABCD.A'B'C'D' có E và F lần lượt là trung điểm của các cạnh AB và DD'. Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng (EFB), (EFC), (EFC') và (EFK) với K là trung điểm của cạnh B'C'.
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.
a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau BD' và B'C.
b)Tính khoảng cách của hai đường thẳng BD' và B'C.
Cho hình thang ABCD vuông tại A và B, có AD = 2a, AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S. Gọi C', D' lần lượt là hình chiếu vuông góc của A trên SC và SD . Chứng minh rằng :
a) \(\widehat{SBC}=\widehat{SCD}=90^0\)
b) AD’,AC’ và AB cùng nằm trên một mặt phẳng.
c) Chứng minh rằng đường thẳng C’D’ luôn luôn đi qua một điểm cố định kho S di động trên tia Ax.
Nhắc lại định nghĩa vectơ không gian. Cho hình lăng trụ tam giác ABC.A'B'C'. Hãy kể tên những vectơ bằng \(\overrightarrow{AA'}\) có điểm đầu và điểm cuối là đỉnh của hình lăng trụ.
Trong không gian cho ba vectơ \(\vec{a}, \vec{b},\vec{c}\) đều khác vectơ không . Khi nào ba véc tơ đó đồng phẳng?
Trong không gian, hai đường thẳng không cắt nhau có thể vuông góc nhau không? Giả sử hai đường thẳng a, b lần lượt có vectơ chỉ phương là \(\vec u\) và \(\vec v\). Khi nào ta có thể kết luận a và b vuông góc nhau?
Muốn chứng minh đường thẳng a vuông góc với mặt phẳng \((\alpha )\) có cần chứng minh a vuông góc với mọi đường thẳng của \((\alpha )\) hay không?
Nhắc lại nội dung định lí ba đường thẳng vuông góc.
Nhắc lại định nghĩa:
a) Góc giữa đường thẳng và mặt phẳng.
b) Góc giữa hai mặt phẳng.
Hãy nêu cách tính khoảng cách:
a) Từ một điểm đến một đường thẳng;
b) Từ đường thẳng a đến mặt phẳng \((\alpha )\) song song với a;
c) Giữa hai mặt phẳng song song.
Cho a và b là hai đường thẳng chéo nhau. Có thể tính khoảng cách giữa hai đường thẳng chéo nhau này bằng những cách nào?
Chứng minh rằng tập hợp các điểm cách đều ba đỉnh của một tam giác ABC là đường vuông góc với mặt phẳng (ABC) và đi qua tâm đường tròn ngoại tiếp tam giác ABC.
Trong các mệnh đề sau đây, mệnh đề nào là đúng?
a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song;
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song;
c) Mặt phẳng (\(\alpha\)) vuông góc với đường thẳng b và b vuông góc với thẳng a, thì a song song với (\(\alpha\)).
d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.
e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.
Các điều khẳng định sau đây, điều nào đúng?
a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
b) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.
d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng (\(\alpha\)) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB.
Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có góc \(\widehat{BAD} = 60^o\). Gọi O là giao điểm của AC và BD. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và \(SO = \frac{3a}{4}\). Gọi E là trung điểm của đoạn BC và F là trung điểm của đoạn BE.
a) Chứng minh mặt phẳng (SOF) vuông góc với mặt phẳng (SBC).
b) Tính các khoảng cách từ O và A đến mặt phẳng (SBC).
Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có A vuông tại D có CD = a.
a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.
b) Gọi I và K lần lượt là trung điểm của Ad và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.
Cho khối lập phương ABCD.A'B'C'D'cạnh a.
a) Chứng minh BC' vuông góc với mặt phẳng (A'B'CD).
b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a có góc \(\widehat{BAD}=60^0\) và \(SA=SB=SD=\frac{a\sqrt{3}}{2}\).
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với SC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tan φ.
Ba vecto \(\vec a,\vec b,\vec c\) có đồng phẳng không nếu một trong hai điều sau đây xảy ra ?
a. Có một vecto trong ba vecto đó bằng \(\overrightarrow 0 \)
b. Có hai vecto trong ba vecto đó cùng phương.
Cho hình chóp S.ABCD
a. Chứng minh rằng nếu ABCD là hình bình hành thì \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \). Điều ngược lại có đúng không ?
b. Gọi O là giao điểm của AC và BD. Chứng tỏ rằng ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 4\overrightarrow {SO} \)
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’, I là giao điểm của hai đường thẳng AB’ và A’B. Chứng minh rằng các đường thẳng GI và CG’ song song với nhau.
Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của các tứ diện A’D’MN và BCC’D’. Chứng minh rằng đường thẳng GG’ và mặt phẳng (ABB’A’) song song với nhau.
Trong không gian cho tam giác ABC.
a. Chứng minh rằng nếu điểm M thuộc mp(ABC) thì có ba số x, y, z mà x + y + z = 1 sao cho \(\overrightarrow {OM} = x\overrightarrow {OA} + y\overrightarrow {OB} + z\overrightarrow {OC} \) với mọi điểm O.
b. Ngược lại, nếu có một điểm O trong không gian sao cho \(\overrightarrow {OM} = x\overrightarrow {OA} + y\overrightarrow {OB} + z\overrightarrow {OC} \), trong đó x + y + z = 1 thì điểm M thuộc mp(ABC).
Cho hình chóp S.ABC. Lấy các điểm A’, B’, C’ lần lượt thuộc các tia SA, SB, SC sao cho SA = aSA’, SB = bSB’, SC = cSC’, trong đó a, b, c là các số thay đổi. Chứng minh rằng mặt phẳng (A’B’C’) đi qua trọng tâm của tam giác ABC khi và chỉ khi a + b + c = 3.
Mỗi khẳng định sau có đúng không ?
a. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau.
b. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì vuông góc với nhau.
a. Cho vecto \(\overrightarrow n \) khác \(\overrightarrow 0 \) và hai vecto \(\overrightarrow a \), \(\overrightarrow b \) không cùng phương. Chứng minh rằng nếu vecto \(\overrightarrow n \) vuông góc với cả hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) thì ba vecto \(\overrightarrow n \), \(\overrightarrow a \), \(\overrightarrow b \) không đồng phẳng.
b. Chứng minh rằng ba vecto cùng vuông góc với vecto \(\overrightarrow n \ne \overrightarrow 0 \) thì đồng phẳng. Từ đó suy ra các đường thẳng cùng vuông góc với một đường thẳng thì cùng song song với một mặt phẳng.
Cho hình chóp S.ABC có SA = SB = SC và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Chứng minh rằng SA ⊥ BC, SB ⊥ AC, SC ⊥ AB.
Cho hình tứ diện ABCD. Chứng minh rằng nếu \(\overrightarrow {AB} .\overrightarrow {AC} = \overrightarrow {AC} .\overrightarrow {AD} = \overrightarrow {AD} .\overrightarrow {AB} \) thì AB ⊥ CD, AC ⊥ BD, AD ⊥ BC. Điều ngược lại có đúng không ?
Cho hình tứ diện ABCD có AB = AC = AD và \(\widehat {BAC} = {60^0},\widehat {BAD} = {60^0}.\)
Chứng minh rằng :
a. AB ⊥ CD;
b. Nếu I và J lần lượt là trung điểm của AB và CD thì IJ ⊥ AB và IJ ⊥ CD.
Khẳng định “Một đường thẳng vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì nó vuông góc với (P)” có đúng không ? Vì sao ?
Cho hai đường thẳng a, b và mặt phẳng (P). Các mệnh đề sau đúng hay sai ?
a. Nếu a // (P) và b ⊥ (P) thì b ⊥ a.
b. Nếu a // (P) và b ⊥ a thì b ⊥ (P)
c. Nếu a // (P), b // a thì b // (P)
Cho điểm S có hình chiếu trên mp(P) là H. Với điểm M bất kì trên (P) (M không trùng H), ta gọi đoạn thẳng SM là đường xiên, đoạn thẳng HM là hình chiếu của đường xiên đó. Chứng minh rằng :
a. Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau.
b. Với hai đường xiên cho trước, đường xiên nào dài hơn thì có hình chiếu dài hơn và ngược lại, đường xiên nào có đường chiếu dài hơn thì dài hơn.
Cho tứ diện ABCD. Tìm điểm O cách đều bốn đỉnh của tứ diện.
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.
a. Tính độ dài AD.
b. Chỉ ra điểm cách đều A, B, C, D
c. Tính góc giữa đường thẳng AD và mặt phẳng (BCD), góc giữa đường thẳng AD và mặt phẳng (ABC).
Cho hình tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc.
a. Chứng minh tam giác ABC có ba góc nhọn.
b. Chứng minh rằng hình chiếu H của điểm O trên mp(ABC) trùng với trực tâm tam giác ABC.
c. Chứng minh rằng \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)
Cho hình chóp S.ABCD có SA ⊥ mp(ABC), các tam giác ABC và SBC không vuông. Gọi H và K lần lượt là trực tâm của tam giác ABC và SBC.
Chứng minh rằng :
a. AH, SK, BC đồng quy ;
b. SC ⊥ mp(BHK)
c. HK ⊥ mp(SBC).
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và SA = SB = SC = b. Gọi G là trọng tâm tam giác ABC.
a. Chứng minh rằng SG ⊥ (ABC). Tính SG.
b. Xét mặt phẳng (P) đi qua A và vuông góc với đường thẳng SC. Tìm hệ thức liên hệ giữa a và b để (P) cắt SC tại điểm C1 nằm giữa S và C. Khi đó hãy tính diện tích thiết diện của hình chóp S.ABC khi cắt bởi mp(P).
a. Cho tứ diện ABCD có AB ⊥ CD, AC ⊥ BD. Chứng minh rằng AD ⊥ BC. Vậy, các cạnh đối diện của tứ diện đó vuông góc với nhau. Tứ diện như thế gọi là tứ diện trực tâm.
b. Chứng minh các mệnh đề sau đây là tương đương :
i. ABCD là tứ diện trực tâm.
ii. Chân đường cao của tứ diện hạ từ một đỉnh trùng với trực tâm của mặt đối diện.
iii. \(A{B^2} + C{D^2} = A{C^2} + B{D^2} = A{D^2} + B{C^2}\)
c. Chứng minh rằng bốn đường cao của tứ diện trực tâm đồng quy tại một điểm. Điểm đó gọi là trực tâm của tứ diện nói trên.
Các mệnh đề sau đúng hay sai ?
a. Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì song song với nhau;
b. Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì vuông góc với nhau;
c. Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với mặt phẳng cho trước ;
d. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước ;
e. Các mặt phẳng cùng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước thì luôn đi qua một đường thẳng cố định ;
f. Hình lăng trụ có hai mặt bên là hình chữ nhật là lăng trụ đứng ;
g. Hình chóp có đáy là đa giác đều và ba cạnh bên bằng nhau là hình chóp đều.
Cho hình hộp ABCD.A’B’C’D’ có AB = a, BC = b, CC’ = c. Nếu \(AC\prime = BD\prime = B\prime D = \sqrt {{a^2} + {b^2} + {c^2}} \)
Thì hình hộp đó có phải là hình hộp chữ nhật không ? Vì sao ?
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a.
a. Chứng minh rằng AC’ vuông góc với hai mặt phẳng (A’BD) và (B’CD’).
b. Cắt hình lập phương bởi mặt phẳng trung trực của AC’. Chứng minh thiết diện tạo thành là một lục giác đều. Tính diện tích thiết diện đó.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ⊥ (ABCD), SA = x. Xác định x để hai mặt phẳng (SBC) và (SDC) tạo với nhau góc 600
Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến Δ. Lấy A, B cùng thuộc Δ và lấy C ϵ (P), D ϵ (Q) sao cho AC ⊥ AB, BD ⊥ AB và AB = AC = BD. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (α) đi qua điểm A và vuông góc với CD. Tính diện tích thiết diện khi AC = AB = BD = a.
Hình hộp ABCD.A’B’C’D’ là hình hộp gì nếu thỏa mãn một trong các điều kiện sau ?
a. Tứ diện AB’CD’ có các cạnh đối bằng nhau ;
b. Tứ diện AB’CD’ có các cạnh đối vuông góc ;
c. Tứ diện AB’CD’ là tứ diện đều.
Cho hai tam giác ACD, BCD nằm trên hai mặt phẳng vuông góc với nhau và AC = AD = BC = BD = a, CD = 2x. Gọi I, J lần lượt là trung điểm của AB và CD.
a. Tính AB, IJ theo a và x.
b. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc ?
Cho tam giác ABC và mặt phẳng (P). Biết góc giữa mp(P) và mp(ABC) là φ (φ ≠ 900); hình chiếu của tam giác ABC trên mp(P) là tam giác A’B’C’. Chứng minh rằng \({S_{A\prime B\prime C\prime }} = {S_{ABC}}.cos\varphi \)
Hướng dẫn. Xét hai trường hợp :
a. Tam giác ABC có một cạnh song song hoặc nằm trong mp(P)
b. Tam giác ABC không có cạnh nào song song hay nằm trong mp(P).
Cho tứ diện ABCD có AC = BC = AD = BD = a, AB = c, CD = c’. Tính khoảng cách giữa hai đường thẳng AB và CD.
Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh đều bằng a. Góc tạo bởi cạnh bên và mặt đáy bằng 30˚. Hình chiếu H của điểm A trên mặt phẳng (A’B’C’) thuộc đường thẳng B’C’.
a. Tính khoảng cách giữa hai mặt phẳng đáy
b. Chứng minh rằng hai đường thẳng AA’ và B’C’ vuông góc, tính khoảng cách giữa chúng.
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Tính khoảng cách giữa hai đường thẳng BC’ và CD’
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = AA’ = a, AC’ = 2a.
a. Tính khoảng cách từ điểm D đến mặt phẳng (ACD’)
b. Tìm đường vuông góc chung của các đường thẳng AC’ và CD’. Tính khoảng cách giữa hai đường thẳng ấy.
Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và \(\widehat {BAD} = \widehat {BAA\prime } = \widehat {DAA\prime } = {60^0}\). Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’)
Cho hình chóp S.ABCD có đáy là hình chữ nhật và Ab = 2a, BC = a. Các cạnh bên của hình chóp bằng nhau và bằng \(a\sqrt 2 \)
a. Tính khoảng cách từ S đến mặt phẳng đáy (ABCD).
b. Gọi E và F lần lượt là trung điểm các cạnh AB và CD ; K là điểm bất kì thuộc đường thẳng AD. Chứng minh rằng khoảng cách giữa hai đường thẳng EF và SK không phụ thuộc vào K, hãy tính khoảng cách đó theo a.
Cho tứ diện ABCD. Chứng minh rằng nếu AC = BD, AD = BC thì đường vuông góc chung của AB và CD là đường thẳng nối trung điểm của AB và CD. Điều ngược lại có đúng không ?
Tứ diện OABC có OA = OB = OC = a và \(\widehat {AOB} = \widehat {AOC} = {60^0},\widehat {BOC} = {90^0}\)
a. Chứng tỏ rằng ABC là tam giác vuông và OA ⊥ BC
b. Tìm đường vuông góc chung IJ của OA và BC ; tính khoảng cách giữa hai đường thẳng OA và BC.
c. Chứng minh rằng hai mặt phẳng (ABC) và (OBC) vuông góc với nhau.
Cho hình chóp S.ABC có SA = SB = SC = a, \(\widehat {ASB} = {120^ \circ },\widehat {BSC} = {60^ \circ },\widehat {CSA} = {90^ \circ }\)
a. Chứng tỏ rằng ABC là tam giác vuông
b. Tính khoảng cách từ S đến mặt phẳng (ABC)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥ (ABCD). Hai điểm M và N lần lượt thay đổi trên cạnh CB và CD, đặt CM = x, CN = y. Tìm hệ thức liên hệ giữa x và y để :
a. Hai mặt phẳng (SAM) và (SAN) tạo với nhau góc 450
b. Hai mặt phẳng (SAM) và (SMN) vuông góc với nhau.
Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC).
Chứng minh rằng \(si{n^2}\alpha = si{n^2}\beta + si{n^2}\gamma \)
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Tính diện tích các tam giác HAB, HBC và HCA.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại đỉnh C, CA = a, CB = b ; mặt bên ABB’A’ là hình vuông. Gọi P là mặt phẳng đi qua C và vuông góc với AB’.
a. Xác định thiết diện của hình lăng trụ đã cho khi cắt bởi (P). Thiết diện là hình gì ?
b. Tính diện tích thiết diện nói trên.
Một tứ diện được gọi là gần đều nếu các cạnh đối bằng nhau từng đôi một. Với tứ diện ABCD, chứng tỏ các tính chất sau là tương đương :
a. Tứ diện ABCD là gần đều ;
b. Các đoạn thẳng nối trung điểm cặp cạnh đối diện đôi một vuông góc với nhau ;
c. Các trọng tuyến (đoạn thẳng nối đỉnh với trọng tâm của mặt đối diện) bằng nhau ;
d. Tổng các góc tại mỗi đỉnh bằng 1800
Cho tứ diện ABCD. Cắt tứ diện đó theo các cạnh đó theo các cạnh AB, AC, AD và trải các mặt ABC, ACD, ADB lên mặt phẳng (BCD) (xem hình 133). Hình phẳng gồm các tam giác BCD, A1BC, A2CD, A3BD gọi là hình khai triển của tứ diện ABCD trên mặt phẳng (BCD).
Cho tứ diện ABCD có trọng tâm G. Mệnh đề nào sau đây là sai ?
A. \(\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\)
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\)
C. \(\overrightarrow {AG} = \frac{2}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\)
D. \(\overrightarrow {AG} = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\)
Mệnh đề nào sau đây là đúng ?
A. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau ;
B. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau ;
C. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia ;
D. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại.
Cho hai đường thẳng phân biệt a, b và mặt phẳng (P), trong đó a ⊥ (P). Mệnh đề nào sau đây là sai ?
A. Nếu b // (P) thì b ⊥ a
B. Nếu b ⊥ (P) thì b // a
C. Nếu b // a thì b ⊥ (P)
D. Nếu b ⊥ a thì b // (P)
Tìm mệnh đề đúng trong các mệnh đề sau :
A. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song ;
B. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song ;
C. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song ;
D. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.
Mệnh đề nào sau đây là đúng ?
A. Hai đường thẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này sẽ vuông góc với mặt phẳng kia ;
B. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì vuông góc với nhau ;
C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau ;
D. Ba mệnh đề trên đều sai.
Trong các mệnh đề sau, mệnh đề nào đúng ?
A. Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước ;
B. Có duy nhất một mặt phẳng đi qua một đường thẳng cho trước và vuông góc với một mặt phẳng cho trước ;
C. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước ;
D. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
Tìm mệnh đề đúng trong các mệnh đề sau :
A. Nếu hình hộp có hai mặt là hình chữ nhật thì nó là hình hộp chữ nhật ;
B. Nếu hình hộp có ba mặt là hình chữ nhật thì nó là hình hộp chữ nhật ;
C. Nếu hình hộp có bốn mặt là hình chữ nhật thì nó là hình hộp chữ nhật ;
D. Nếu hình hộp có năm mặt là hình chữ nhật thì nó là hình hộp chữ nhật.
Trong các mệnh đề sau, mệnh đề nào đúng ?
A. Nếu hình hộp có hai mặt là hình vuông thì nó là hình lập phương ;
B. Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương ;
C. Nếu hình hộp có sáu mặt bằng nhau thì nó là hình lập phương ;
D. Nếu hình hộp có bốn đường chéo bằng nhau thì nó là hình lập phương.
Cho hình chóp S.ABC có đáy là tam giác đều. Tìm mệnh đề đúng trong các mệnh đề sau :
A. S.ABC là hình chóp đều nếu các mặt bên của nó là tam giác cân ;
B. S.ABC là hình chóp đều nếu các mặt bên của nó là tam giác cân với đỉnh S ;
C. S.ABC là hình chóp đều nếu góc giữa các mặt phẳng chứa các mặt bên và mặt phẳng chứa đáy bằng nhau ;
D. S.ABC là hình chóp đều nếu các mặt bên có diện tích bằng nhau.
Tìm mệnh đề đúng trong các mệnh đề sau :
A. Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia ;
B. Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia ;
C. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó ;
D. Các mệnh đề trên đều sai.
Hình tứ diện ABCD có AB, AC, AD đôi một vuông góc là AB = AC = AD = 3.
Diện tích tam giác BCD bằng
A. \(\frac{{9\sqrt 3 }}{2}\)
B. \(\frac{{9\sqrt 2 }}{3}\)
C. 27
D. \(\frac{{27}}{2}\)
Hình hộp ABCD.A’B’C’D’ có AB = AA’ = AD = a và \(\widehat {A'AB} = \widehat {A'AD} = \widehat {BAD} = {60^ \circ }\) Khi đó, khoảng cách giữa các đường thẳng chứa các cạnh đối diện của tứ diện AA’BD bằng :
A. \(\frac{{a\sqrt 2 }}{2}\)
B. \(\frac{{a\sqrt 3 }}{2}\)
C. \(a\sqrt 2 \)
D. \(\frac{{3a}}{2}\)
Cho tam giác ABC và các điểm M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB.
a. Xét bốn tam giác APN, PBM, NMC, MNP. Tìm phép dời hình biến tam giác APN lần lượt thành một trong ba tam giác còn lại.
b. Phép vị tự nào biến tam giác ABC thành tam giác MNP ?
c. Xét tam giác có ba đỉnh là trực tâm của ba tam giác APN, PBM và NCM. Chứng tỏ rằng tam giác đó bằng tam giác APN. Chứng minh điều đó cũng đúng nếu thay trực tâm bằng trọng tâm, hoặc tâm đường tròn ngoại tiếp hoặc tâm đường tròn nội tiếp.
Cho tứ giác ABCD nội tiếp đường tròn (O). Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD và DA. Kẻ MM’, NN’, PP’, QQ’ lần lượt vuông góc với CD, DA, AB, BC.
a. Gọi I là giao điểm của MP và NQ. Phép đối xứng tâm ĐI biến các đường thẳng MM’, NN’, PP’, QQ’ thành những đường thẳng nào ?
b. Chứng tỏ rằng bốn đường thẳng MM’, NN’, PP’, QQ’ đồng quy tại một điểm. Nhận xét gì về vị trí điểm đồng quy và hai điểm I, O ?
Cho tam giác ABC và hai hình vuông ABMN, ACPQ như hình 134.
a. Xác định phép quay biến tam giác ABQ thành tam giác ANC.
b. Chứng tỏ rằng hai đoạn thẳng BQ, CN bằng nhau và vuông góc với nhau.
c. Gọi O, O’ là tâm của các hình vuông, I là trung điểm của BC. Chứng minh rằng tam giác OIO’ là tam giác vuông cân.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và BD ; P là một điểm thay đổi trên đoạn thẳng AD.
a. Xác định giao điểm Q của mp(MNP) và cạnh AC. Tứ giác MNPQ là hình gì ?
b. Tìm quỹ tích giao điểm I của QM và PN
c. Tìm quỹ tích giao điểm J của QN và PM.
Cho hình hộp ABCD.A’B’C’D’. Điểm M nằm giữa A và D, điểm N nằm giữa C và C’ sao cho \(\frac{{AM}}{{MD}} = \frac{{CN}}{{NC'}}\)
a. Chứng minh rằng đường thẳng MN song song với mp(ACB’)
b. Xác định thiết diện của hình hộp khi cắt bởi mặt phẳng đi qua MN và song song với mp(ACB’)
Cho ba tia Ox, Oy, Oz không đồng phẳng. Chứng minh rằng các tia phân giác ngoài của các góc xOy, yOz và zOx đồng phẳng
Cho hình chóp S.ABC. Gọi K và N lần lượt là trung điểm của SA và BC ; M là điểm nằm giữa S và C.
a. Chứng minh rằng mặt phẳng đi qua K, song song với AB và SC thì đi qua điểm N.
b. Xác định thiết diện của hình chóp S.ABC khi cắt bởi mp(KMN). Chứng tỏ rằng KN chia thiết diện thành hai phần có diện tích bằng nhau.
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt 2 .\)
a. Tính khoảng cách từ S đến mp(ABCD).
b. Tính khoảng cách giữa đường thẳng AB và mp(SCD)
c. Tính khoảng cách giữa hai đường thẳng AB và SC.
d. Gọi P là mặt phẳng đi qua A và vuông góc với SC. Hãy xác định thiết diện của hình chóp khi cắt bởi (P). Tính diện tích thiết diện.
e. Tính góc giữa đường thẳng AB và mp(P).
Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Hai tia Bx và Cy cùng vuông góc với mp(ABC) và nằm về một phía đối với mặt phẳng đó. Trên Bx, Cy lần lượt lấy các điểm B’, C’ sao cho BB’ = a, CC’ = m.
a. Với giá trị nào của m thì AB’C’ là tam giác vuông ?
b. Khi tam giác AB’C’ vuông tại B’, kẻ AH ⊥ BC. Chứng minh rằng B’C’H là tam giác vuông. Tính góc giữa hai mặt phẳng (ABC) và (AB’C’).
Copyright © 2021 HOCTAP247