A. \[S = \mathop \smallint \limits_a^b f\left( x \right)dx\]
B. \[S = \mathop \smallint \limits_0^b f\left( x \right)dx\]
C. \[S = \mathop \smallint \limits_b^a \left| {f\left( x \right)} \right|dx\]
D. \[S = \mathop \smallint \limits_a^b \left| {f\left( x \right)} \right|dx\]
A.\[S = \mathop \smallint \limits_{ - 3}^{ - 1} \left| {{x^2} - 1} \right|dx\]
B. \[S = \mathop \smallint \limits_{ - 1}^{ - 3} \left| {{x^2} - 1} \right|dx\]
C. \[S = \mathop \smallint \limits_{ - 3}^0 \left| {{x^2} - 1} \right|dx\]
D. \[S = \mathop \smallint \limits_{ - 3}^{ - 1} \left( {1 - {x^2}} \right)dx\]
A.\[S = \mathop \smallint \limits_a^b \left( {f\left( x \right) - g\left( x \right)} \right)dx\]
B. \[S = \mathop \smallint \limits_a^b \left( {g\left( x \right) - f\left( x \right)} \right)dx\]
C. \[S = \mathop \smallint \limits_a^b \left| {f\left( x \right) - g\left( x \right)} \right|dx\]
D. \[S = \mathop \smallint \limits_a^b \left| {f\left( x \right)} \right|dx - \mathop \smallint \limits_a^b \left| {g\left( x \right)} \right|dx\]
A.\[S = \mathop \smallint \limits_0^e \left| {{e^x} + x} \right|dx\]
B. \[S = \mathop \smallint \limits_0^e \left| {{e^x} - x} \right|dx\]
C. \[S = \mathop \smallint \limits_e^0 \left| {{e^x} - x} \right|dx\]
D. \[S = \mathop \smallint \limits_e^0 \left| {{e^x} + x} \right|dx\]
A.\[S = \left| {\mathop \smallint \nolimits_{ - 1}^1 \left( {3x - {x^3}} \right)dx} \right|\]
B. \[S = \mathop \smallint \nolimits_{ - 1}^0 \left( {3x - {x^3}} \right)dx + \mathop \smallint \nolimits_0^1 \left( {{x^3} - 3x} \right)dx\]
C. \[S = \mathop \smallint \nolimits_{ - 1}^1 \left( {3x - {x^3}} \right)dx\]
D. \[S = \mathop \smallint \nolimits_{ - 1}^0 \left( {{x^3} - 3x} \right)dx + \mathop \smallint \nolimits_0^1 \left( {3x - {x^3}} \right)dx\]
A.\[S = 2 + e\]
B. \[S = 2 - e\]
C. \[S = e - 2\]
D. \[S = e - 1\]
A.\[S = b - a.\]
B. \[S = b + a.\]
C. \[S = - b + a.\]
D. \[S = - b - a.\]
A.\[S = \frac{{16}}{3}\]
B. \[S = \frac{{161}}{6}\]
C. \[S = \frac{1}{6}\]
D. \[S = \frac{5}{6}\]
A.\[\pi + \frac{4}{3}\]
B. \[\frac{\pi }{2} - 1\]
C. \[\frac{\pi }{2}\]
D. \[\frac{\pi }{2} + \frac{1}{3}\]
B. \[S = \left| {\mathop \smallint \limits_0^2 \left( {{x^3} + x - 2} \right)d{\rm{x}}} \right|\]
C. \[S = \frac{1}{2} + \mathop \smallint \limits_0^1 {x^3}d{\rm{x}}\]
D. \[S = \mathop \smallint \limits_0^1 \left| {{x^3} + x - 2} \right|d{\rm{x}}\]
A.\[S = \mathop \smallint \limits_{ - 1}^0 f(x)dx + \mathop \smallint \limits_0^1 |f(x)|dx\]
B. \[\mathop \smallint \limits_{ - 1}^1 \left| {f\left( x \right)} \right|dx\]
C. \[S = \mathop \smallint \limits_{ - 1}^1 f(x)dx\]
D. \[S = \left| {\mathop \smallint \limits_{ - 1}^1 f(x)dx} \right|\]
A.\[S = \frac{{125}}{6}({m^2})\]
B. \[S = \frac{{125}}{4}\left( {{m^2}} \right)\]
C. \[S = \frac{{250}}{3}\left( {{m^2}} \right)\]
D. \[S = \frac{{125}}{3}\left( {{m^2}} \right)\]Trả lời:
A.\[\frac{{107}}{6}\]
B. \[\frac{{109}}{6}\]
C. \[\frac{{109}}{7}\]
D. \[\frac{{109}}{8}\]
A.\[S = \frac{8}{3}\]
B. \[S = 1\]
C. \[S = \frac{4}{3}\]
D. \[S = 2\]
A.0 .
B.16
C.4 .
D.8
A.\[S = \mathop \smallint \nolimits_{ - 2}^2 f(x)dx\]
B. \[S = \mathop \smallint \nolimits_1^{ - 2} f(x)dx + \mathop \smallint \nolimits_1^2 f(x)dx\]
C. \[S = \mathop \smallint \nolimits_{ - 2}^1 f(x)dx + \mathop \smallint \nolimits_1^2 f(x)dx\]
D. \[S = \mathop \smallint \nolimits_{ - 2}^1 f(x)dx - \mathop \smallint \nolimits_1^2 f(x)dx\]
A.\[S = \frac{8}{3}\]
B. \[S = \frac{4}{3}\]
C. \[S = 4\]
D. \[S = \frac{{16}}{9}\]
A.\[\frac{{128}}{3}{m^2}\]
B. \[\frac{{131}}{3}{m^2}\]
C. \[\frac{{28}}{3}{m^2}\]
D. \[\frac{{26}}{3}m\]
A.\[\frac{{253}}{{12}}\]
B. \[\frac{{253}}{{24}}\]
C. \[ - \frac{{125}}{{24}}\]
D. \[ - \frac{{125}}{{12}}\]
A.\[506\,\,\left( {c{m^2}} \right)\]
B. \[747\,\,\left( {c{m^2}} \right)\]
C. \[507\,\,\left( {c{m^2}} \right)\]
D. \[746\,\,\left( {c{m^2}} \right)\]
A.\[\frac{5}{2}\]
B. \[\frac{{35}}{6}\]
C. \[\frac{{ - 5}}{2}\]
D. \[\frac{{ - 35}}{6}\]
A.1.954.000 đồng
B.2.123.000 đồng
C.1.946.000 đồng
D.2.145.000 đồng
A.\[\frac{9}{2}\]
B.\[\frac{{18}}{5}\]
C.4
D.5
A.2ln3.
B.ln3.
C.ln18.
D.2ln2.
Cho hình vuông ABCD tâm O, độ dài cạnh là 4cm. Đường cong BOC là một phần của parabol đỉnh O chia hình vuông thành hai hình phẳng có diện tích lần lượt là S1 và S2 (tham khảo hình vẽ).
Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng:
A.\(\frac{1}{2}\)
B. \[\frac{3}{5}\]
C. \[\frac{2}{5}\]
D. \[\frac{1}{3}\]
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247