Một con lắc lò xo gồm lò xo nhẹ có độ cứng k và vật nhỏ có khối lượng m dao động điều hòa theo phương nằm ngang. Lấy π2 = 10. Khi vật ở vị trí có li độ x thì vận tốc của vật là v....

Câu hỏi :

Một con lắc lò xo gồm lò xo nhẹ có độ cứng k và vật nhỏ có khối lượng m dao động điều hòa theo phương nằm ngang. Lấy π2 = 10. Khi vật ở vị trí có li độ x thì vận tốc của vật là v. Lực hồi phục cực đại của con lắc được xác định theo biểu thức

A. \(k\left( {{x^2} + \frac{{m{v^2}}}{k}} \right)\)     

B. \(k\sqrt {\left( {{x^2} + \frac{{k{v^2}}}{m}} \right)} \)

C. \(k\sqrt {\left( {{x^2} + \frac{{m{v^2}}}{k}} \right)} \)

D. \(k\left( {{x^2} + \frac{{k{v^2}}}{m}} \right)\)

* Đáp án

C

* Hướng dẫn giải

Khi con lắc lò xo dao động theo phương ngang thì lực hồi phục chính là lực đàn hồi.

Lực hồi phục tác dụng lên vệt là: \({F_{hp}} = kx\)

Lực hồi phục cực đại là khi x = A.

Áp dụng công thức độc lập với thời gian, ta có:

\({x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {A^2}\\ \Rightarrow A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}}  = \sqrt {{x^2} + \frac{{m{v^2}}}{k}} \)

Vậy \({F_{hp\max }} = k.\sqrt {{x^2} + \frac{{m{v^2}}}{k}} \)

Chọn C.

Copyright © 2021 HOCTAP247