Một hình chóp tứ giác đều có độ dài cạnh đáy là \(6cm\), chiều cao là \(4cm\) thì diện tích xung quanh là:

Câu hỏi :

Một hình chóp tứ giác đều có độ dài cạnh đáy là \(6cm\), chiều cao là \(4cm\) thì diện tích xung quanh là:

A. \(128c{m^2}\)

B. \(96c{m^2}\)

C. \(120c{m^2}\)

D. \(60c{m^2}\)

* Đáp án

D

* Hướng dẫn giải

Giả sử có chóp đều \(S.ABCD\), \(O\) là tâm của đáy, \(I\) là trung điểm của \(CD\).

Suy ra \(OI\) là đường trung bình của tam giác \(DBC\) nên \(OI=BC:2=3cm\)

Áp dụng định lí Py-ta-go vào tam giác vuông \(SOI\), ta có:

\(S{I^2} = S{O^2} + O{I^2}\)

\(\Rightarrow SI = \sqrt {S{O^2} + O{I^2}}\)\(\,  = \sqrt {{4^2} + {3^2}}  = 5\,\left( {cm} \right)\)

Diện tích xung quanh của hình chóp là:

\(\displaystyle {S_{xq}} = {1 \over 2}.4.6.5 = 60\;(c{m^2})\)

Copyright © 2021 HOCTAP247