A. 1,22
B. 1,15
C. 1,26
D. 1,19
C
Ta có: \(\left\{ {\begin{array}{*{20}{l}} {r = 30\Omega }\\ {{Z_L} = 120\Omega }\\ {{Z_C} = 100\Omega } \end{array}} \right.\)
Công suất trên biến trở: \({P_R} = {I^2}R = \frac{{{U^2}}}{{{{(R + r)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}R\)
Công suất trên mạch: \(P' = {I^2}(R + r) = \frac{{{U^2}}}{{{{(R + r)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}(R + r)\)
Ta có: \(P = {P_R} + P' = \frac{{{U^2}}}{{{{(R + r)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}(2R + r)\) \( \Rightarrow P = \frac{{{U^2}}}{{{{(R + 30)}^2} + {{20}^2}}}(2R + 30)\)
\( \Rightarrow P = \frac{{{U^2}}}{{{R^2} + 60R + 1300}}2(R + 15)\)
\( \Rightarrow P = \frac{{{U^2}}}{{\left( {{R^2} + 30R + {{15}^2}} \right) + 30(R + 15) + 625}}2(R + 15)\)
\( \Rightarrow P = \frac{{2{U^2}}}{{(R + 15) + \frac{{625}}{{R + 15}} + 30}}\)
Ta có: \({P_{\max }}\;khi\;{\left[ {(R + 15) + \frac{{625}}{{(R + 15)}}} \right]_{\min }}\)
Lại có: \((R + 15) + \frac{{625}}{{R + 15}} \ge 2\sqrt {(R + 15)\frac{{625}}{{(R + 15)}}} = 50\)
Dấu = xảy ra khi \((R + 15) = \frac{{625}}{{R + 15}} \Rightarrow R = 10\Omega \)
Từ đồ thị ta có: \(\frac{{{R_1}}}{R} = \frac{7}{5} \Rightarrow {R_1} = \frac{7}{5}R = \frac{7}{5}.10 = 14\Omega \)
Khi \(R = {R_1} = 14\Omega :\)
+ Tổng trở: \(Z = \sqrt {{{\left( {{R_1} + r} \right)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} = \sqrt {{{(14 + 30)}^2} + {{20}^2}} = 4\sqrt {146} \Omega \)
+ Hệ số công suất trên cuộn dây: \(\cos {\varphi _d} = \frac{r}{Z} = \frac{{30}}{{4\sqrt {146} }}\)
+ Hệ số công suát trên mạch: \(\cos \varphi = \frac{{{R_1} + r}}{Z} = \frac{{14 + 30}}{{4\sqrt {146} }}\)
Tổng hệ số công suất trên cuộn dây và trên mạch: \(\frac{{30}}{{4\sqrt {146} }} + \frac{{44}}{{4\sqrt {146} }} = 1,531\)
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247