A. 180 Ω.
B. 150 Ω.
C. 192 Ω.
D. 175 Ω.
C
Ta nhận thấy: \({{U}_{L}}=I{{Z}_{L}}=\frac{U{{Z}_{L}}}{\sqrt{{{R}^{2}}+{{\left( {{Z}_{L}}-{{Z}_{C}} \right)}^{2}}}}=\frac{U}{\sqrt{\left( {{R}^{2}}+Z_{C}^{2} \right)\frac{1}{Z_{L}^{2}}-2{{\text{Z}}_{C}}\frac{1}{{{Z}_{L}}}+1}}\)
\(\left( {{R}^{2}}+Z_{C}^{2} \right)\frac{1}{Z_{L}^{2}}-2{{\text{Z}}_{C}}\frac{1}{{{Z}_{L}}}+\left( 1-\frac{{{U}^{2}}}{U_{L}^{2}} \right)=0\)
\(\left\{ \begin{array}{l} \frac{1}{{{Z_{L1}}}}.\frac{1}{{{Z_{L2}}}} = \frac{c}{a} = \frac{{1 - {{\left( {\frac{U}{{{U_L}}}} \right)}^2}}}{{{R^2} + Z_C^2}} = \frac{{1 - {{\left( {\frac{{90\sqrt 5 }}{{270}}} \right)}^2}}}{{{{2.100}^2}}} = \frac{1}{{45000}} \to \left\{ \begin{array}{l} {Z_{L1}} = 300\Omega \\ {Z_{L2}} = 150\Omega \end{array} \right.\\ \frac{1}{{{Z_{L1}}}} + \frac{1}{{{Z_{L2}}}} = - \frac{b}{a} = \frac{{2{{\rm{Z}}_C}}}{{{R^2} + Z_C^2}} = \frac{{{Z_C}}}{{{{100}^2}}} \end{array} \right.\)
\({{U}_{L\max }}\Leftrightarrow \frac{1}{{{Z}_{L0}}}=-\frac{b}{2a}=\frac{1}{2}\left( \frac{1}{{{Z}_{L1}}}+\frac{1}{{{Z}_{L2}}} \right)\Rightarrow {{Z}_{L0}}=200\Omega \Rightarrow \) Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247