cho tam giác abc có góc a = 60 độ, trực tâm H. Gọi m là điểm đối xứng với h qua bc

Câu hỏi :

Cho ΔABCA^=600, trực tâm H. Gọi M là điểm đối xứng với H qua BC
a) Chứng minh ΔBHC=ΔBMC
b) Tính BMC^

* Đáp án

* Hướng dẫn giải

cho tam giác abc có góc a = 60 độ, trực tâm H. Gọi m là điểm đối xứng với h qua bc (ảnh 1)

a) Do H,M đối xứng qua BCBC là đường trung trực HMBH=BMCH=CM

Xét ΔBHC và ΔBMC có:

BH=BM,HC=MC(cmt);BC chung ΔBHC=ΔBMC(c.c.c)

b) Ta có: ABH^=900BAC^ (do phụ nhau)

CAH^=900BAC^ (phụ nhau)

ΔABHBHM^ là góc ngoài nên BHM^=BAM^+ABH^

cmtt CHM^=HAC^+HCA^

BHC^=BHM^+CHM^=HAC^+CAH^+HAB^+ABH^=BAC^+900BAC^+900BAC^=1800BAC^=1800600=1200

Vì ΔBHC=ΔBMCBMC^=BHC^=1200

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 8 - Tuần 5 !!

Số câu hỏi: 29

Copyright © 2021 HOCTAP247