Cho hình chữ nhật ABCD. Qua E là một điểm bất kỳ nằm trrên đường chéo AC, kẻ hai đường chéo FG//AD và HK//AB

Câu hỏi :

Cho hình chữ nhật ABCD. Qua E là một điểm bất kỳ nằm trrên đường chéo AC, kẻ hai đường chéo FG//AD và HK//AB ( F AB, G DC, H AD, K DC ). Chứng minh rằng hai hình chữ nhật EFBK và EGDH có cùng diện tích.

* Đáp án

* Hướng dẫn giải

Cho hình chữ nhật ABCD. Qua E là một điểm bất kỳ nằm trrên đường chéo AC, kẻ hai đường chéo FG//AD và HK//AB (ảnh 1)

Theo giả thiết ta có FG//AD, HK//AB nên HE//AF và AH//EF.

Xét tứ giác AFEH có:

Cho hình chữ nhật ABCD. Qua E là một điểm bất kỳ nằm trrên đường chéo AC, kẻ hai đường chéo FG//AD và HK//AB (ảnh 2)

AFEH là hình bình hành.

Mà Aˆ = 900  AFEH là hình chữ nhật.

Δ AFE = Δ AHE ( c - g - c ) → SAFE = SAHE.

Tương tự: SEKC = SEGC; SABC = SADC

SABC - SAFE - SEKC = SADC - SAHE - SEGC hay SEFBK = SEHDG.

Copyright © 2021 HOCTAP247