Trên 3 cạnh AB, BC, CA của Δ ABC lấy ba đoạn AD, BE, CF mỗi đoạn dài bằng 1/3 độ dài

Câu hỏi :

Trên 3 cạnh AB, BC, CA của Δ ABC lấy ba đoạn AD, BE, CF mỗi đoạn dài bằng 13  độ dài của cạnh tương ứng. Chứng minh SABC = 3SDEF.

* Đáp án

* Hướng dẫn giải

Trên 3 cạnh AB, BC, CA của Δ ABC lấy ba đoạn AD, BE, CF mỗi đoạn dài bằng 1/3 độ dài (ảnh 1)

Đặt SABC = 9a. Ta có:

+ SABE = 13SABC = 13.9a = 3a (vì chung đường cao kẻ từ A xuống BC và BC = 3BE)

+ SADE = 13SABE = 13.3a = a (vì chung đường cao kẻ từ E xuống AB và AB = 3AD )

Do đó SBDE = SABE - SADE = 3a - a = 2a.

Tương tự: SADF = SCEF = 2a

Vậy SDEF = 9a - 6a = 3a hay SABC = 3SDEF.

Copyright © 2021 HOCTAP247