Cho tam giác ABC vuông tại A (AB < AC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N. a) Chứng minh tứ giác AMIN là hình chữ nhật...

Câu hỏi :

Cho tam giác ABC vuông tại A (AB < AC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N.

a) Chứng minh tứ giác AMIN là hình chữ nhật.

b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ACID là hình thoi.

c) Cho AC = 20cm, BC = 25cm.Tính diện tích ΔABC

d) Đường thẳng BN cắt cạnh DC tại K. Chứng minh:

Cho tam giác ABC vuông tại A (AB < AC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N. a) Chứng minh tứ giác AMIN là hình chữ nhật. b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ACID là hình thoi. c) Cho AC = 20cm, BC = 25cm.Tính diện tích ΔABC d) Đường thẳng BN cắt cạnh DC tại K. Chứng minh: (ảnh 1)

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC vuông tại A (AB < AC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N. a) Chứng minh tứ giác AMIN là hình chữ nhật. b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ACID là hình thoi. c) Cho AC = 20cm, BC = 25cm.Tính diện tích ΔABC d) Đường thẳng BN cắt cạnh DC tại K. Chứng minh: (ảnh 2)

a) Xét tứ giác AMIN có:

(MAN) = (ANI) = (IMA) = 90o

Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202  AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) DK = KH = HC DK/DC= 1/3.

Copyright © 2021 HOCTAP247