Cho tam giác ABC( AB > AC ) có góc A = 50 độ. Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi E, F lần lượt là

Câu hỏi :

Cho tam giác ABC( AB > AC ) có A^ = 500. Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi E,F lần lượt là trung điểm của cạnh AD, BC. Tính BEF^ = ?

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC( AB > AC ) có góc A = 50 độ. Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi E, F lần lượt là (ảnh 1)

Do E,F lần lượt là trung điểm của cạnh AD,BC theo giả thiết nên ta vẽ thêm I là trung điểm của CD nên EI, FI theo thứ tự lần lượt là đường trung bình của tam giác BCD và ACD.

Đặt BD = AC = 2a

Áp dụng định lý đường trung bình của hai tam giác trên ta có:

( 1 )      FI//BD       ( 2 )       FI = a

( 3 )      EI = a       ( 4 )      EI//AC

Từ ( 1 )  E1^=F1^ (vì so le trong)       ( 5 )

Từ ( 2 ) và ( 3 ) FI = EI nên E2^=F1^ (vì trong tam giác, đối diện với hai cạnh bằng nhau là hai góc bằng nhau)       ( 6 )

Từ ( 5 ) và ( 6 )  E1^=E2^

Từ ( 4 )  BEI^=A^ = 500 (vì đồng vị)

Mà BEI^=2E1^E1^ = 250

Copyright © 2021 HOCTAP247