Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I.

Câu hỏi :

Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Chứng minh tứ giác AHCE là hình chữ nhật.

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. (ảnh 1)

+ Trong Δ AHC vuông có I là trung điểm của AC

HE là đường trung tuyến của Δ AHC.

HI = 12AC = AI = IC.

Mà E đối xứng với H qua I HI = IE.

Khi đó ta có HI = IE = AI = IC.

+ Xét Δ HCE có CI là đường trung tuyến ứng với cạnh HE

mà CI = 12HE Δ HCE vuông tại C.

Tương tự xét với Δ AHE,Δ AEC đều là các tam giác vuông tại A, E.

Xét tứ giác AHCE có EAH^=AHC^=HCE^=CEA^ = 900

AHCE là hình chữ nhật.

Copyright © 2021 HOCTAP247