Cho hình bình hành ABCD, O là giao điểm của hai đường chéo

Câu hỏi :

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chứng minh rằng điểm M đối xứng với điểm N qua O.

* Đáp án

* Hướng dẫn giải

Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình bình hành có O là giao điểm hai đường chéo

⇒ OB = OD.

+ ABCD là hình bình hành ⇒ AB // CD ⇒ Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc SLT).

Hai tam giác BOM và DON có:

Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔBOM = ΔDON (g.c.g)

⇒ OM = ON

⇒ O là trung điểm của MN

⇒ M đối xứng với N qua O.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải toán 8: Chương 1: Tứ giác !!

Số câu hỏi: 134

Copyright © 2021 HOCTAP247