Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC

Câu hỏi :

Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD có điều kiện gì thì EFGH là:

* Đáp án

* Hướng dẫn giải

Giải bài 88 trang 111 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có: EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒ EF // AC và EF = AC/2.

HA = HD, HC = GD

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2.

Do đó EF // HG, EF = HG

⇒ EFGH là hình bình hành.

a) Hình bình hành EFGH là hình chữ nhật ⇔ EH ⊥ EF

⇔ AC ⊥ BD (vì EH // BD, EF// AC)

b) Hình bình hành EFGH là hình thoi

⇔ EF = EH

⇔ AC = BD (Vì EF = AC/2, EH = BD/2)

c) EFGH là hình vuông

⇔ EFGH là hình thoi và EFGH là hình chữ nhật

⇔ AC = BD và AC ⊥ DB.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải toán 8: Chương 1: Tứ giác !!

Số câu hỏi: 134

Copyright © 2021 HOCTAP247