Cho hình bình hành ABCD. Các điểm M, N theo thứ tự là trung điểm

Câu hỏi :

Cho hình bình hành ABCD. Các điểm M, N theo thứ tự là trung điểm của AB, CD. Gọi E là giao điểm của AN và DM, K là giao điểm BN và CM. Hình bình hình ABCD phải có điều kiện gì để tứ giác MENK là:

* Đáp án

* Hướng dẫn giải

Giải bài 4 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8

ABCD là hình bình hành ⇒ AB = CD.

M là trung điểm AB ⇒ AM = MB = AB/2.

N là trung điểm CD ⇒ CN = DN = CD/2.

⇒ AM = MB = CN = DN.

+ Tứ giác BMDN có: BM // DN và BM = DN

⇒ BMDN là hình bình hành

⇒ DM // BN hay ME // NK

+ Tứ giác AMCN có: AM // NC, AM = NC

⇒ AMCN là hình bình hành

⇒ AN // CM hay EN // MK.

+ Tứ giác MENK có: ME // NK và NE // MK

⇒ MENK là hình bình hành.

a) MENK là hình thoi

⇔ MN ⊥ EK.

⇔ CD ⊥ AD (Vì EK // CD và MN // AD)

⇔ ABCD là hình chữ nhật.

b) MENK là hình chữ nhật

⇔ MN = EK

Mà MN = BC; Giải bài 4 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8 (vì tam giác MCD có E và K lần lượt là trung điểm MD, MC nên EK là đường trung bình của tam giác MCD).

Giải bài 4 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ CD = 2.BC.

c) MENK là hình vuông

⇔ MENK là hình thoi và đồng thời là hình chữ nhật

⇔ ABCD là hình chữ nhật và có CD = 2.BC.

Copyright © 2021 HOCTAP247