A.
A2 = 3,17 cm.
B. A2 = 6,15 cm.
C. A2 = 4,87 cm.
D. A2 = 8,25 cm
C
Từ đồ thị: T/4 = 0,5 s → T = 2 s → ω = 2π/T = π (rad/s).
Tại thời điểm t = 0,5 s, đồ thị x12 ở vị trí nửa biên âm đi xuống và đồ thị x23 ở vị trí biên âm nên:
\(\begin{array}{l} \left\{ \begin{array}{l} {x_{12}} = 8\cos \left( {\pi \left( {t - 0,5} \right) + \frac{{2\pi }}{3}} \right) = 8\cos \left( {\pi t + \frac{\pi }{6}} \right)\left( {cm} \right)\\ {x_{23}} = 4\cos \left( {\pi \left( {t - 0,5} \right) + \pi } \right) = 4\cos \left( {\pi t = \frac{\pi }{2}} \right)\left( {cm} \right) \end{array} \right.\\ {x_1} - {x_3} = {x_{12}} - {x_{23}} = 8\angle \frac{\pi }{6} - 4\angle \frac{\pi }{2} = 4\sqrt 3 = 4\sqrt 3 \cos \pi t\left( {cm} \right) \end{array}\)
Mặt khác:
\(\begin{array}{l} {x_1} - {x_3} = 1,5a\cos \left( {\omega t + {\varphi _1}} \right) - a\cos \left( {\omega t + {\varphi _1} + \pi } \right)\\ = 2,5a\cos \left( {\omega t + {\varphi _1}} \right)\\ \Rightarrow {\varphi _1} = 0,{i_3} = \pi \\ 2,5a = 4\sqrt 3 \Rightarrow a = 1,6\sqrt 3 \left( {cm} \right) \end{array}\)
Tương tự:
\(\begin{array}{l} {x_{31}} = {x_3} + {x_1} = a\cos \left( {\pi t + \pi } \right) + 1,5a\cos \pi t\\ = 0,8\sqrt 3 \cos \pi t\\ \Rightarrow {x_2} = \frac{{{x_{12}} + {x_{23}} - {x_{31}}}}{2} = \frac{{8\angle \frac{\pi }{6} + 4\angle \frac{\pi }{2} - 0,8\sqrt 3 }}{2}\\ \Rightarrow {x_2}\frac{{4\sqrt {37} }}{5}\\ \Rightarrow {A_2} = 4,866\left( {cm} \right) \end{array}\)
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247