A. 4,4 cm
B. 4,3 cm
C. 2,7 cm
D. 4,7 cm
A
Ta có:
\(\begin{array}{l}
{\left( {\frac{x}{v}} \right)^/} = \frac{{{x^/}v - {v^/}x}}{{{v^2}}}\\
{\left( {\frac{x}{v}} \right)^/} = \frac{{{v^2} + {\omega ^2}{x^2}}}{{{v^2}}} = 1 + \frac{{{x^2}}}{{\frac{{{v^2}}}{{{\omega ^2}}}}}\\
{A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}}\\
\Rightarrow \frac{{{v^2}}}{{{\omega ^2}}} = {A^2} - {x^2}{\left( {\frac{x}{v}} \right)^/} = 1 + \frac{{{x^2}}}{{{A^2} - {x^2}}}
\end{array}\)
Lấy đạo hàm hai vế theo thời gian:
\(\begin{array}{l}
\frac{{{x_1}}}{{{v_1}}} + \frac{{{x_2}}}{{{v_2}}} = \frac{{{x_3}}}{{{v_3}}}\\
\Rightarrow \left( {1 + \frac{{x_1^2}}{{A_1^2 - x_1^2}}} \right) + \left( {1 + \frac{{x_2^2}}{{A_2^2 - x_2^2}}} \right) = 1 + \frac{{x_3^2}}{{A_3^2 - x_3^2}}\\
\Rightarrow 1 + \frac{{x_1^2}}{{A_1^2 - x_1^2}} + \frac{{x_2^2}}{{A_2^2 - x_2^2}} = \frac{{x_3^2}}{{A_3^2 - x_3^2}} \Rightarrow \left| {{x_3}} \right| = 4,4
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247