A. 75cm /s
B. 60 cm/s
C. 90 cm/s
D. 120 cm/s
A
Độ biến dạng của lò xo tại VTCB: \(\Delta {{l}_{0}}=\frac{mg}{k}=\frac{0,1.10}{25}=4cm\)
Quá trình chuyển động của vật được chia làm hai giai đoạn:
+ Giai đoạn 1: Vật rơi tự do xuống dưới. Chọn HQC gắn với điểm treo lò xo trục Ox thẳng đứng chiều dương hướng xuống dưới, gốc O tại vị trí cân bằng.
Vật nặng chịu tác dụng của các lực trọng lực, lực đàn hồi của lò xo, lực quán tính \(\left( {{F}_{qt}}=P \right)\).
Tại vị trí cân bằng và trong quá trình rơi, vật dao động điều hòa quanh vị trí lò xo không biến dạng với biên độ \(A=\Delta {{l}_{0}}\).
Thời điểm t = 0, con lắc bắt đầu rơi thì vật đang ở biên dưới.
Tần số góc của dao động: \(\omega =\sqrt{\frac{k}{m}}=5\pi (\text{rad}/\text{s})\Rightarrow T=\frac{2\pi }{\omega }=0,4s\)
Sau khoảng thời gian \({{t}_{1}}=0,02\sqrt{15}=\frac{\sqrt{15}}{20}T\) ứng với góc quét \(\varphi =\omega {{t}_{1}}={{69}^{0}}\)
Khi đó li độ của vật là: \({{x}_{1}}=A\cdot \cos {{69}^{0}}=1,4~\text{cm}\)
Khi đó vật có vận tốc là: \(v=-\omega \cdot \sqrt{{{A}^{2}}-{{x}^{2}}}=-58,93(~\text{cm}/\text{s})\)
+ Giai đoạn 2: Khi lò xo bị giữ ở chính giữa.
Xét trong hệ quy chiếu gắn với mặt đất, vật chịu tác dụng của 2 lực: Trọng lực và lực đàn hồi.
Độ cứng \({{k}^{\prime }}=2k\Rightarrow \text{VTCB}\) mới ở cách vị trí cân bằng cũ 2cm , là vị trí lò xo dãn \(\Delta l=\frac{mg}{{{k}^{\prime }}}=2cm\)
Sau thời gian t1 , vận tốc của vật nặng so với mặt đất là: \(\overrightarrow{{{v}_{13}}}=\overrightarrow{{{v}_{12}}}+\overrightarrow{{{v}_{23}}}\Rightarrow {{v}_{13}}=-58,93+gt=18,53~\text{cm}/\text{s}\)
Li độ của vật tại thời điểm t1 trong hệ quy chiếu gắn với mặt đất là: \({{x}_{13}}=-1,4-2=3,4cm\)
Khi đó tần số góc: \({{\omega }^{\prime }}=\sqrt{\frac{{{k}^{\prime }}}{m}}=\sqrt{2}\omega =5\sqrt{2}\pi (\text{rad}/\text{s})\)
Khi đó vật dao động quanh vị trí \({{O}^{'}}\) với biên độ: \({{A}^{\prime }}=\sqrt{x_{13}^{2}+{{\left( \frac{{{v}_{13}}}{{{\omega }^{\prime }}} \right)}^{2}}}\approx 3,5~\text{cm}\)
Sau thời gian \(\Delta t=0,07s\)
Vị trí ban đầu \(\alpha =\operatorname{acr}\cos \frac{3,4}{3,5}=13,{{8}^{0}}\)
Góc quét được \(\varphi =\omega \Delta t=5\sqrt{2}\pi .0,07={{89}^{0}}\)
Li độ lúc đó là \(x=A\cdot \sin \left( \alpha +\varphi -{{90}^{0}} \right)=0,77~\text{cm}\)
Vận tốc lúc đó là \(v={{\omega }^{\prime }}\sqrt{{{A}^{\prime 2}}-{{x}^{2}}}=75,8~\text{cm}/\text{s}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247