A. 0,24H
B. 0,38H
C. 0,45H
D. 0,29H
D
Ta có: \(\varphi ={{\varphi }_{d}}-{{\varphi }_{AB}}\)
\(\tan \varphi =\tan \left( {{\varphi }_{d}}-{{\varphi }_{AB}} \right)=\frac{\tan {{\varphi }_{d}}-\tan {{\varphi }_{AB}}}{1-\tan {{\varphi }_{d}}.\tan {{\varphi }_{AB}}}\)
Lại có:
\(\begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{\tan {\varphi _d} = \frac{{{Z_L}}}{r}}\\
{\tan {\varphi _{AB}} = \frac{{{Z_L}}}{{R + r}}}
\end{array}} \right.\\
\Rightarrow \tan \varphi = \frac{{\frac{{{Z_L}}}{r} - \frac{{{Z_L}}}{{R + r}}}}{{1 + \frac{{Z_L^2}}{{r(R + r)}}}} = \frac{{{Z_L}R}}{{r(R + r) + Z_L^2}}\\
\Rightarrow \tan \varphi = \frac{R}{{\frac{{r(R + r)}}{{{Z_L}}} + {Z_L}}}
\end{array}\)
Ta có: \(\frac{r(R+r)}{{{Z}_{L}}}+{{Z}_{L}}\ge 2\sqrt{r(R+r)}\Rightarrow \tan \varphi \le \frac{R}{2\sqrt{r(R+r)}}\)
\(\Rightarrow \tan {{\varphi }_{\max }}\) khi \(\frac{r(R+r)}{{{Z}_{L}}}={{Z}_{L}}\) (*) và \(\tan {{\varphi }_{\max }}=0,65\Rightarrow \frac{R}{2\sqrt{50(50+R)}}=0,65\Rightarrow R=119,77\Omega \)
Thay vào (*) ta suy ra: \({{Z}_{L}}=92,13\Omega =\omega {{L}_{0}}\Rightarrow {{L}_{0}}=0,29H\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247