A. \( \frac{{1}}{{2019}}\)
B. \( \frac{{-1}}{{2019}}\)
C. \( \frac{{2018}}{{2019}}\)
D. \( \frac{{2013}}{{2019}}\)
C
\(\begin{array}{l} A = \frac{{2019{x^2} - 2 \cdot x \cdot 2019 + {{2019}^2}}}{{2019{x^2}}} = \frac{{{{(x - 2019)}^2}}}{{2019{x^2}}} + \frac{{2018{x^2}}}{{2019{x^2}}} = \frac{{{{(x - 2019)}^2}}}{{2019{x^2}}} + \frac{{2018}}{{2019}}\\ Ta\,có\,\frac{{{{(x - 2019)}^2}}}{{2019{x^2}}} > 0,\forall x > 0 \Rightarrow \frac{{{{(x - 2019)}^2}}}{{2019{x^2}}} + \frac{{2018}}{{2019}} \ge \frac{{2018}}{{2019}} \end{array}\)
Vậy \(MinA = \frac{{2018}}{{2019}}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247