Thực hiện giải phương trình \(\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = \dfrac{4}{{{x^2} - 1}}\)

Câu hỏi :

Giải phương trình \(\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = \dfrac{4}{{{x^2} - 1}}\)   

A. Phương trình vô nghiệm

B. Phương trình vô số nghiệm

C. x = 1

D. Đáp án khác

* Đáp án

A

* Hướng dẫn giải

Điều kiện xác định: \(x-1\ne 0 ; x+1\ne 0\), tức là \(x \ne  \pm 1\)

Quy đồng mẫu thức:

\(\dfrac{{\left( {x + 1} \right).\left( {x + 1} \right)}}{{{x^2} - 1}} - \dfrac{{\left( {x - 1} \right).\left( {x - 1} \right)}}{{{x^2} - 1}}\)\(\, = \dfrac{4}{{{x^2} - 1}}\)

\(⇔\dfrac{{\left( {x + 1} \right)^2-\left( {x - 1} \right)^2}}{{{x^2} - 1}}\)\(\, = \dfrac{4}{{{x^2} - 1}}\)

⇒ \({\left( {x + 1} \right)^2} - {\left( {x - 1} \right)^2} = 4\)

⇔ \( {x^2} + 2x + 1 - \left( {{x^2} - 2x + 1} \right) = 4\)

\(⇔{x^2} + 2x + 1 - {x^2} + 2x - 1 = 4\) 

\(⇔4x = 4\)

\( \Leftrightarrow x = 4:4\)

\(⇔x = 1\) (không thỏa mãn ĐKXĐ)

Vậy phương trình vô nghiệm.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề ôn tập hè môn Toán 8 năm 2021 Trường THCS Lê Quí Đôn

Số câu hỏi: 40

Copyright © 2021 HOCTAP247