Tìm Q biết ​\(\begin{array}{l} \frac{{x - y}}{{{x^3} + {y^3}}} \cdot Q = \frac{{{x^2} - 2xy + {y^2}}}{{{x^2} - xy + {y^2}}} \end{array}\)

Câu hỏi :

Tìm Q biết \(\begin{array}{l} \frac{{x - y}}{{{x^3} + {y^3}}} \cdot Q = \frac{{{x^2} - 2xy + {y^2}}}{{{x^2} - xy + {y^2}}} \end{array}\)

A.  \({x^2} - {y^2}\)

B.  \(2x- {y^2}\)

C.  \(2{x^2}\)

D.  \(2{x^2} - {y^2}\)

* Đáp án

A

* Hướng dẫn giải

 \(\begin{array}{l} \frac{{x - y}}{{{x^3} + {y^3}}} \cdot Q = \frac{{{x^2} - 2xy + {y^2}}}{{{x^2} - xy + {y^2}}}\\ \Rightarrow Q = \frac{{{x^2} - 2xy + {y^2}}}{{{x^2} - xy + {y^2}}}:\frac{{x - y}}{{{x^3} + {y^3}}}\\ = \frac{{{{(x - y)}^2}}}{{{x^2} - xy + {y^2}}} \cdot \frac{{(x + y)\left( {{x^2} - xy + {y^2}} \right)}}{{x - y}}\\ = (x - y)(x + y) = {x^2} - {y^2} \end{array}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề ôn tập hè môn Toán 8 năm 2021 Trường THCS Lê Quí Đôn

Số câu hỏi: 40

Copyright © 2021 HOCTAP247