Cho hình thang ABCD (AB // CD) có diện tích 36cm^2, AB = 4cm, CD = 8cm

Câu hỏi :

Cho hình thang ABCD (AB // CD) có diện tích 36cm2, AB = 4cm, CD = 8cm. Gọi O là giao điểm của hai đường chéo. Tính diện tích tam giác COD.

A. 8cm2

B. 6cm2

C. 16cm2

D. 32cm2

* Đáp án

* Hướng dẫn giải

Kẻ AH DC; OK DC tại H, K suy ra AH // OK

Chiều cao của hình thang: AH = 2SABCDAB+CD=2.364+8=6 (cm)

Vì AB // CD (do ABCD là hình thang) nên theo định lý Ta-lét ta có

OCOA=CDAB=84=2OCOA+OC=22+1OCAC=23

Vì AH // OK (cmt) nên theo định lý Ta-lét cho tam giác AHC ta có:

OKAH=OCAC=23 => OK = 23AH => OK = 23.6 = 4(cm)

Do đó SCOD = 12OK.DC = 12.4.8 = 16cm2

Đáp án: C

Copyright © 2021 HOCTAP247