Cho tam giác ABC vuông tại A, đường cao AH chia cạnh BC thành hai đoạn

Câu hỏi :

Cho tam giác ABC vuông tại A, đường cao AH chia cạnh BC thành hai đoạn thẳng HB = 7cm và HC = 18cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng  đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.

A. 15cm

B. 12cm

C. 10cm

D. 8cm

* Đáp án

* Hướng dẫn giải

Gọi D là giao điểm của AC và đường vuông góc với BC tại E.

Xét ΔAHC và ΔABC có C chung và AHC^=BAC^=90 nên ΔAHC ~ ΔBAC (g-g)

Ta có SDEC=12SABC (1), SAHC:SABC=1825(2).

Từ (1) và (2) suy ra

SDEC:SAHC=12:1825=2536=(56)2 3

Vì DE // AH (cùng vuông với BC) suy ra ΔDEC ~ ΔAHC nên

SDEC:SAHC=(ECHC)2(4)

Từ (3) và (4) suy ra ECHC=56 tức là EC18=56 => EC = 15cm.

Đáp án: A

Copyright © 2021 HOCTAP247