Cho năm điểm trên mặt phẳng trong đó không có ba điểm nào thẳng hàng

Câu hỏi :

Cho năm điểm trên mặt phẳng trong đó không có ba điểm nào thẳng hàng. Chứng minh rằng bao giờ cùng có thể chọn được bốn điểm là đỉnh của một tứ giác lồi.

* Đáp án

* Hướng dẫn giải

Xét bốn điểm A, B, C, D. Nếu bốn điểm đó là đỉnh của một tứ giác lồi thì bài toán được chứng minh xong. Nếu bốn điểm đó không là đỉnh của một tứ giác lồi thì tồn tại một điểm (giả sử D) nằm trong tam giác có đỉnh là ba điểm còn lại. Chia mặt phẳng thành chín như hình vẽ, điểm thứ năm E nằm bên trong một miền (vì trong năm điểm không có ba điểm thẳng hàng).

Nếu E thuộc các miền 1, 4, 8, ta chọn bốn điểm là E và A, D, B. Nếu E thuộc các miền 2, 5, 7, ta chọn E và A, D, C.

Nếu E thuộc các miền 3, 6, 9 ta chọn E và B, D, C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Ôn tập Tứ giác có đáp án !!

Số câu hỏi: 101

Copyright © 2021 HOCTAP247