Số nghiệm của phương trình trị tuyệt đối (1 – x) - trị tuyệt đối (2x – 1) = x – 2 là

Câu hỏi :

Số nghiệm của phương trình |1 – x| - |2x – 1| = x – 2 là

A. 1

B. 2

C. 3

D. 4

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có |1 – x| - |2x – 1| = x – 2 (1)

Xét: +) 1 – x = 0  x = 1

+) 2x – 1 = 0  x = 12

Ta có bảng xét dấu đa thức 1 – x và 2x – 1 dưới đây

Từ bảng xét dấu ta có:

TH1: x <12 khi đó |2x – 1| = 1 – 2x; |1 – x| = 1 – x nên phương trình (1) trở thành

1 – x – (1 – 2x) = x – 2  1 – x – 1 + 2x = x – 2 x = x – 2  0 = - 2 (vô lý)

TH2: 12  x  1, khi đó |2x – 1| = 2x – 1; |1 – x| = 1 – x nên phương trình (1) trở thành 1 – x – (2x – 1) = x – 2  -3x + 2 = x – 2  -4x = -4  x = 1 (TM)

TH3: x > 1, khi đó |2x – 1| = 2x – 1; |1 – x| = x – 1 nên phương trình (1) trở thành x – 1 – (2x – 1) = x – 2  -x  = x – 2  2x = 2  x = 1 (KTM)

Vậy phương trình có một nghiệm  x = 1

Copyright © 2021 HOCTAP247