Cho hình thang ABCD (AB // CD) có diện tích 48cm^2, AB = 4cm, CD = 8cm. Gọi

Câu hỏi :

Cho hình thang ABCD (AB // CD) có diện tích 48cm2, AB = 4cm, CD = 8cm. Gọi O là giao điểm của hai đường chéo. Tính diện tích tam giác COD

A. 643cm2

B. 15cm2

C. 16cm2

D. 32cm2

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Kẻ AH ⊥ DC; OK ⊥ DC tại H, K suy ra AH // OK

Chiều cao của hình thang: AH =2SABCDAB+CD=2.484+8=8 (cm)

Vì AB // CD (do ABCD là hình thang) nên theo định lý Ta-lét ta có

OCOA=CDAB=84=2OCOA+OC=22+1OCAC=23

Vì AH // OK (cmt) nên theo định lý Ta-lét cho tam giác AHC ta có:

OKAH=OCAC=23OK = 23AHOK = 23.6 = 4(cm)

Do đó SCOD = 12OK.DC = 12.163.8 =643cm2

Copyright © 2021 HOCTAP247