Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D

Câu hỏi :

Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.

A. ADE^=AED^

B. BDM^=MEC^

C. DEM^=CEM^

D. BMD^=CME^

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Tam giác ABC có: M là trung điểm của BC nên AM vừa là đường trung tuyến vừa là đường phân giác trong góc A.

Lại có: DM là ghân giác của góc BDE nên DM là phân giác ngoài góc D của tam giác ADE.

Tam giác ADE có phân giác trong AM cắt phân giác ngoài DM tại M nên EM là đường phân giác ngoài góc E hay EM là phân giác của góc DEC.

Vậy DEM^=CEM^

Copyright © 2021 HOCTAP247