Cho hình thang cân ABCD, đáy nhỏ AB = 6, CD = 18, AD = 10

Câu hỏi :

Cho hình thang cân ABCD, đáy nhỏ AB = 6, CD = 18, AD = 10. Gọi I, K, M, L lần lượt là trung điểm của các đoạn BC, CA, AD và BD. Tứ giác ABKL là hình gì?

A. Hình chữ nhật

B. Hình bình hành

C. Hình thang cân

D. Hình thang vuông

* Đáp án

* Hướng dẫn giải

Xét tam giác ABD có: M, L lần lượt là trung điểm của AD, BD, do đó ML là đường trung bình của tam giác ABD. Suy ra ML // AB và ML = AB: 2 = 3. Vậy ML nằm trên đường trung bình MI của hình thang ABCD. (1)

Chứng minh tương tự ta có: IK là đường trung bình của tam giác ABC. Do đó, IK // AB và IK = AB : 2 = 3. Vậy IK nằm trên đường trung bình MI của hình thang ABCD. (2)

Từ (1) và (2) suy ra: bồn điểm M, L, K, I nằm trên đường trung bình MI của hình thang ABCD.

Ta có: MI = 12(AB + CD) = 12(6 + 18) = 12

(do MI là đường trung bình của hình thang ABCD)

Suy ra KL = MI – ML – KI = 12 – 3 – 3 = 6

Xét tứ giác ABKL có: KL = AB ( = 6); KL // AB.

Do đó ABKL là hình bình hành.

Lại có: BL = 12BD, AK = 12AC

Mà AC = BD (đường chéo hình thang cân)

Suy ra AK = BL

Xét hình bình hành ABKL có AK = KL nên suy ra ABKL là hình chữ nhật

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Hình chữ nhật có đáp án (Vận dụng) !!

Số câu hỏi: 7

Copyright © 2021 HOCTAP247