Tính độ dài nhỏ nhất của DE khi M di chuyển trên BC biết AB = 15cm

Câu hỏi :

Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Tính độ dài nhỏ nhất của DE khi M di chuyển trên BC biết AB = 15cm, AC = 20cm.

A. 9 cm

B. 15 cm

C. 8 cm

D. 12 cm

* Đáp án

* Hướng dẫn giải

Theo DE nhỏ nhất khi M là hình chiếu của A trên BC.

Khi đó DE = AM

Xét tam giác ABC, theo định lý Pytago ta có

BC2 = BA2 + AC2 = 625 => BC = 25

Gọi BM = x thì MC = 25 – x

Xét tam giác AMB vuông tại M, theo định lý Pytago ta có

AM2 = AB2 – BM2 = 152 – x2 = 225 – x2 (1)

Xét tam giác AMC vuông tại M, theo định lý Pytago ta có

AM2 = AC2 – MC2 = 202 – (25 – x)2

ó 225 – x2 = 400 – (625 – 50x + x2)

ó 50x = 450 ó x = 9

Suy ra: AM2 = 225 – x2 = 225 – 81 = 144 => AM = 12

Suy ra DE = AM =12cm

Vậy giá trị nhỏ nhất của DE là 12cm

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Hình chữ nhật có đáp án (Vận dụng) !!

Số câu hỏi: 7

Copyright © 2021 HOCTAP247