Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA

Câu hỏi :

Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q theo thứ tự là trung điểm của AD, AF, EF, ED. ΔABC có điều kiện gì thì MNPQ là hình chữ nhật?

A. ΔABC cân tại A

B. ΔABC cân tại B

C. ΔABC cân tại C

D. ΔABC vuông tại A

* Đáp án

* Hướng dẫn giải

Xét ΔADE có: AM = MD; DQ = EQ nên MQ là đường trung bình của ΔADE

=> MQ // AE, MQ = 12AE

Xét ΔAEF có: AN = NF; FP = PE (giả thiết) nên NP là đường trung bình của ΔAEF.

=> NP // AE , NP = 12AE

Suy ra MQ // NP (cùng // AE) và MQ = NP (= 12AE)

Tứ giác MNPQ có: MQ // NP và MQ = NP nên là hình bình hành (dấu hiệu nhận biết).

Để MNPQ là hình chữ nhật thì MN ⊥  PQ (1)

Ta có: NP // AE (chứng minh trên) (2)

Ta lại có: AM = MD, AN = NF (gt) => MN // DF

Mặt khác: AD = DB, AF = FC (gt) => DF // BC

Vậy MN // BC (3)

Từ (1), (2), (3) suy ra: AE ⊥  BC

Mà BE = EC (gt)

Do đó ΔABC cân tại A (do AE vừa là đường cao, vừa là đường trung tuyến)

Đáp án cần chọn là: A

Copyright © 2021 HOCTAP247