Cho đa thức \(P\left( x \right){\rm{ = }}{{\rm{x}}^4} - 3{x^2} + \frac{1}{2} - x\)
Tìm đa thức Q(x), R(x), sao cho:
a) \(P(x)+Q(x)=x^5-2x^2+1\)
b) \(P(x)-R(x)=x^3\)
a) Ta có:
\(\begin{array}{l} P\left( x \right){\rm{ + Q}}\left( x \right){\rm{ = }}{{\rm{x}}^5} - 2{x^2} + 1\\ \Rightarrow {\rm{Q}}\left( x \right) = {{\rm{x}}^5} - 2{x^2} + 1 - P\left( x \right)\\ = {{\rm{x}}^5} - 2{x^2} + 1 - \left( {{x^4} - 3{{\rm{x}}^2} + \frac{1}{2} - x} \right)\\ = {{\rm{x}}^5} - 2{x^2} + 1 - {x^4} + 3{{\rm{x}}^2} - \frac{1}{2} + x\\ = {{\rm{x}}^5} - {x^4} + {{\rm{x}}^2} + x + \frac{1}{2} \end{array}\)
b) Ta có:
\(\begin{array}{l} P\left( x \right) - R\left( x \right) = {x^3} \Rightarrow R\left( x \right) = P\left( x \right) - {x^3}\\ R\left( x \right) = {x^4} - 3{{\rm{x}}^2} + \frac{1}{2} - x - {x^3} = {x^4} - {x^3} - 3{{\rm{x}}^2} - x + \frac{1}{2} \end{array}\)
-- Mod Toán 7
Copyright © 2021 HOCTAP247