Cho hai đa thức:
\(\begin{array}{l} P\left( x \right) = 3{{\rm{x}}^2} - 5 + {x^4} - 3{{\rm{x}}^3} - {x^6} - 2{{\rm{x}}^2} - {x^3}\\ Q\left( x \right) = {x^3} + 2{{\rm{x}}^5} - {x^4} + {x^2} - 2{{\rm{x}}^3} + x - 1 \end{array}\)
a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến
b) Tính P(x)+Q(x) và P(x)-Q(x)
a) \(P\left( x \right) = 3{{\rm{x}}^2} - 5 + {x^4} - 3{{\rm{x}}^3} - {x^6} - 2{{\rm{x}}^2} - {x^3} = - 5 + {x^2} - 4{{\rm{x}}^3} + {x^4} - {x^6}\)
\(Q\left( x \right) = {x^3} + 2{{\rm{x}}^5} - {x^4} + {x^2} - 2{{\rm{x}}^3} + x - 1 = - 1 + x + {x^2} - {x^3} - {x^4} + 2{{\rm{x}}^5}\)
b) Tính P(x)+Q(x)
\(\begin{array}{l} P\left( x \right) + Q\left( x \right) = - 5 + {x^2} - 4{{\rm{x}}^3} + {x^4} - {x^6} + \left( { - 1 + x + {x^2} - {x^3} - {x^4} + 2{{\rm{x}}^5}} \right)\\ = - 6 + x + 2{{\rm{x}}^2} - 5{{\rm{x}}^3} + 2{{\rm{x}}^5} - {x^6} \end{array}\)
\(\begin{array}{l} P\left( x \right) - Q\left( x \right) = - 5 + {x^2} - 4{{\rm{x}}^3} + {x^4} - {x^6} - \left( { - 1 + x + {x^2} - {x^3} - {x^4} + 2{{\rm{x}}^5}} \right)\\ = - 5 + {x^2} - 4{{\rm{x}}^3} + {x^4} - {x^6} + 1 - x - {x^2} + {x^3} + {x^4} - 2{{\rm{x}}^5}\\ = - 4 - x - 3{{\rm{x}}^3} + 2{{\rm{x}}^4} - 2{{\rm{x}}^5} - {x^6} \end{array}\)
-- Mod Toán 7
Copyright © 2021 HOCTAP247