Phân tích các đa thức sau thành nhân tử:
a) x\(^3 + \dfrac{1}{27}\)
b) (a + b)\(^3\) – (a – b)\(^3\)
c) (a + b)\(^3\) + (a – b)\(^3\)
d) 8x\(^3\) + 12x\(^2\)y + 6xy\(^2\) + y\(^3\)
e) –x\(^3\) + 9x\(^2\) – 27x + 27
a) x\(^3 + \dfrac{1}{27}\) = x\(^3\) + (\(\dfrac{1}{3}\))\(^3\) = (x + \(\dfrac{1}{3}\))(x\(^2\) - \(\dfrac{1}{3}\)x + \(\dfrac{1}{9}\))
b) (a + b)\(^3\) – (a – b)\(^3\)
= (a + b - a + b)[(a + b)\(^2\) + (a + b)(a - b) + (a - b)\(^2\)]
= 2b(a\(^2\) + 2ab + b\(^2\) + a\(^2\) - b\(^2\) + a\(^2\) - 2ab + b\(^2\)) = 2b(3a\(^2\) + b\(^2\))
c) (a + b)\(^3\) + (a – b)\(^3\)
= (a + b + a - b)[(a + b)\(^2\) - (a + b)(a - b) + (a - b)\(^2\)]
= 2a(a\(^2\) + 2ab + b\(^2\) - a\(^2\) + b\(^2\) + a\(^2\) - 2ab + b\(^2\)) = 2a(a\(^2\) + 3b\(^2\))
d) 8x\(^3\) + 12x\(^2\)y + 6xy\(^2\) + y\(^3\)
= (2x)\(^3\) + 3.(2x)\(^2\).y + 3.2x.y\(^2\) + y\(^3\) = (2x + y)\(^3\)
e) –x\(^3\) + 9x\(^2\) – 27x + 27 = -(x\(^3\) - 9x\(^2\) + 27x - 27)
= -(x\(^3\) - 3.x\(^2\).3 - 3.x.3\(^2\) - 3\(^3\)) = -(x - 3)\(^3\) = (3 - x)\(^3\).
Copyright © 2021 HOCTAP247