a) \({{2x - 10} \over {25 - {x^2}}}\)
b) \({{4{y^2} - 4y + 1} \over {2 - 4y}}.\)
Bài 2. Tìm P, biết: \(a\left( {P - a - 4} \right) - 2P = 4,\) với \(a \ne 2.\)
Bài 1.
a) \({{2x - 10} \over {25 - {x^2}}} = {{ - \left( {10 - 2x} \right)} \over {25 - {x^2}}} = {{ - 2\left( {5 - x} \right)} \over {\left( {5 - x} \right)\left( {5 + x} \right)}} = {{ - 2} \over {x + 5}}.\)
b) \({{4{y^2} - 4y + 1} \over {2 - 4y}} = {{{{\left( {2y - 1} \right)}^2}} \over {2\left( {1 - 2y} \right)}} = {{{{\left( {1 - 2y} \right)}^2}} \over {2\left( {1 - 2y} \right)}} = {{1 - 2y} \over 2}.\)
Bài 2. Ta có: \(a\left( {P - a + 4} \right) - 2P = 4\)
\(\Rightarrow aP - {a^2} + 4a - 2P = 4\)
\( \Rightarrow \left( {a - 2} \right)P = {a^2} - 4a + 4\)
\(\Rightarrow \left( {a - 2} \right)P = {\left( {a - 2} \right)^2}\)
\( \Rightarrow P = {{{{\left( {a - 2} \right)}^2}} \over {a - 2}} \)
\(\Rightarrow P = a - 2.\)
Copyright © 2021 HOCTAP247