a. Chứng minh rằng AB là tiếp tuyến của đường tròn (C; CA) và AC là tiếp tuyến của đường tròn (B; BA).
b. AB cắt đường tròn (B) tại D và AC cắt đường tròn (C) tại E. Chứng minh rằng ba điểm D, M, E thẳng hàng (M là giao điểm thứ hai của hai đường tròn).
a. Ta có: \(\eqalign{ & A{B^2} + A{C^2} = B{C^2} \cr & \left( {{6^2} + {8^2} = {{10}^2}} \right) \cr} \)
Theo định lí Pi-ta-go đảo ta có: ∆ABC vuông tại A hay \(AB ⊥ AC ⇒\) AB là tiếp tuyến của (C; CA) và AC là tiếp tuyến của (B; BA).
b. Ta có: \(\widehat {AMD} = 90^\circ \) (AD là đường kính ) \(⇒ MD ⊥ AM\) (1)
Tương tự: \(\widehat {AME} = 90^\circ \) \(⇒ ME ⊥ AM\) (2)
Từ (1) và (2) suy ra MD và ME phải trùng nhau hay ba điểm D, M, E thẳng hàng.
Copyright © 2021 HOCTAP247