Đề kiểm 15 phút - Đề số 4 - Bài 5 - Chương 3 - Đại số 9

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Một mảnh vườn hình chữ nhật có chu vi \(34m\), nếu tăng chiều dài thêm \(3m\) và tăng chiều rộng thêm \(2m\) thì diện tích tăng thêm \(45{m^2}\). Tính chiều dài và chiều rộng của mảnh vườn.

Hướng dẫn giải

Gọi \(x, y\) lần lượt là chiều dài và chiều rộng của mảnh vườn (\( x, y > 0\)).

Chu vi của vườn là \(2(x + y)\; (m)\), nên ta có phương trình :

\(2(x + y) = 34\Leftrightarrow  x + y = 17\)

Diện tích của vườn lúc đầu là \(xy\,\,({\rm{ }}{m^2})\); diện tích của vườn lúc sau là \(\left( {{\rm{ }}x + 3} \right)\left( {y + 2} \right)\;({m^2}).\)

Theo bài ra, ta có phương trình : \(\left( {x + 3} \right)\left( {y + 2} \right) = xy + 45\)

Vậy, ta có hệ phương trình : \(\left\{ \matrix{  x + y = 17 \hfill \cr  \left( {x + 3} \right)\left( {y + 2} \right) = xy + 45 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x + y = 17 \hfill \cr  2x + 3y = 39 \hfill \cr}  \right.\)

\(\Leftrightarrow \left\{ \matrix{  2x + 2y = 34 \hfill \cr  2x + 3y = 39 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  y = 5 \hfill \cr  x + y = 17 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = 12 \hfill \cr  y = 5 \hfill \cr}  \right.\)

Vậy chiều dài, chiều rộng của mảnh vườn là \(12\; (m)\) và \(5\; (m)\).

Copyright © 2021 HOCTAP247