Bài 25 trang 54 SGK Đại số 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Đi một hãng taxi quy định giá thuê xe đi mỗi kilômét là 6 nghìn đồng đối 10 km đầu tiên và 2,5 nghìn đồng đối với các kilômét tiếp theo. Một khách thuê taxi đi quãng đường x kilômét phải trả số tiền là y nghìn đồng. Khi đó, y là một hàm số của đối số x, xác định với mọi x ≥ 0.

a) Hãy biểu diễn y như một hàm số bậc nhất trên từng khoảng ứng với đoạn \([0 ; 10]\) và khoảng \((10 ; +∞)\)

b) Tính f(8), f(10) và f(18).

c) Vẽ đồ thị của hàm số y = f(x) và lập bảng biến thiên cùa nó.

Hướng dẫn giải

a) Ta có:

Nếu \(x ∈ [0, 10]\) tức hành khách đi không quá 10km thì số tiền phải trả là: \(y = 6x\) (nghìn đồng)

Nếu \(x ∈ (10 ; +∞)\) tức hành khách đi hơn 10km thì số tiền phải trả là:

\(y = 10.6 + (x – 10). 2,5\) (nghìn đồng)

 \(\Leftrightarrow y  = 2,5x + 35\)

Vậy: 

\(y = \left\{ \matrix{
6x\,\,\,\,\,\,;\,\,\,\,0 \le x \le 10 \hfill \cr
2,5x + 35\,\,\,;\,\,\,x > 10 \hfill \cr} \right.\)

b) Ta có:

\(f(8) = 48\)

\(f(10) = 60\)

\(f(18) = 80\)

c) Bảng giá trị:

x

0

10

y = 6x

0

60

y = 2,5x + 35

35

60

x

0

10

y = 6x

0

60

y = 2,5x + 35

35

60

 

Bảng biến thiên:

 

Đồ thị hàm số:

 

Copyright © 2021 HOCTAP247