Bài 1 trang 71 SGK Đại số 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Tìm điều kiện xác định của mỗi phương trình sau rồi suy ra tập nghiệm của nó.

a) \(\sqrt x  = \sqrt { - x} \)

b) \(3x - \sqrt {x - 2}  = \sqrt {2 - x}  + 6\)

c) \({{\sqrt {3 - x} } \over {x - 3}} = x + \sqrt {x - 3} \)

d) \(x + \sqrt {x - 1}  = \sqrt { - x} \)

Hướng dẫn giải

a) Điều kiện xác định:

\(\left\{ \matrix{
x \ge 0 \hfill \cr
- x \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 0 \hfill \cr
x \le 0 \hfill \cr} \right. \Leftrightarrow x = 0\)

Thay x = 0 vào phương trình ta thấy thỏa mãn

Vậy tập nghiệm của S = {0}

b) Điều kiện xác định:

\(\left\{ \matrix{
x - 2 \ge 0 \hfill \cr
2 - x \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 2 \hfill \cr
x \le 2 \hfill \cr} \right. \Leftrightarrow x = 2\)

x = 2 thỏa mãn phương trình nên S = {2}

c) Điều kiện xác định:

\(\left\{ \matrix{
x - 3 \ge 0 \hfill \cr
3 - x \ge 0 \hfill \cr
x - 3 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 3 \hfill \cr
x \le 3 \hfill \cr
x \ne 3 \hfill \cr} \right.\)

Vô nghiệm. Vậy S = Ø

d)

Điều kện xác định:

\(\left\{ \matrix{
x \ge 1 \hfill \cr
x \le 0 \hfill \cr} \right.\)

Vô nghiệm. Vậy S = Ø 

Copyright © 2021 HOCTAP247