Giải các hệ bất phương trình
a)
\(\left\{ \matrix{
5x - 2 > 4x + 5 \hfill \cr
5x - 4 < x + 2 \hfill \cr} \right.\)
b)
\(\left\{ \matrix{
2x + 1 > 3x + 4 \hfill \cr
5x + 3 \ge 8x - 9 \hfill \cr} \right.\)
a)
\(\left\{ \matrix{
5x - 2 > 4x + 5 \hfill \cr
5x - 4 < x + 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x > 7 \hfill \cr
4x < 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x > 7 \hfill \cr
x < {3 \over 2} \hfill \cr} \right.\)
(vô nghiệm)
Vậy \(S = Ø\)
b)
\(\left\{ \matrix{
2x + 1 > 3x + 4 \hfill \cr
5x + 3 \ge 8x - 9 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x < - 3 \hfill \cr
3x \le 12 \hfill \cr} \right. \Leftrightarrow x < - 3\)
Vậy \(S = (-∞, -3)\)
Copyright © 2021 HOCTAP247