a) \({{{x^4} - {x^2}} \over {{x^2} + 5x + 6}} \le 0\)
b) \({1 \over {{x^2} - 5x + 4}} < {1 \over {{x^2} - 7x + 10}}\)
Đáp án
a) Ta có:
\({{{x^4} - {x^2}} \over {{x^2} + 5x + 6}} \le 0 \Leftrightarrow {{{x^2}({x^2} - 1)} \over {{x^2} + 5x + 6}} \le 0\)
Bảng xét dấu:
Vậy \(S = (-3, -2) ∪ [-1, 1]\)
b) Ta có:
\(\eqalign{
& {1 \over {{x^2} - 5x + 4}} < {1 \over {{x^2} - 7x + 10}} \cr&\Leftrightarrow {1 \over {{x^2} - 5x + 4}} - {1 \over {{x^2} - 7x + 10}} < 0 \cr
& \Leftrightarrow {{ - 2x + 6} \over {({x^2} - 5x + 4)({x^2} - 7x + 10)}} < 0 \cr} \)
Xét dấu vế trái:
Vậy \(S = (1, 2) ∪ (3, 4) ∪ (5, +∞)\)
Copyright © 2021 HOCTAP247