Bài 61 trang 136 SGK Đại số 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Tìm tập xác định của mỗi hàm số sau:

a) \(y = \sqrt {(2x + 5)(1 - 2x)} \)

b) \(y = \sqrt {{{{x^2} + 5x + 4} \over {2{x^2} + 3x + 1}}} \)

Hướng dẫn giải

a) Hàm số đã cho xác định

\(⇔ (2x + 5)(1 – 2x) ≥ 0\)

\( \Leftrightarrow  - {5 \over 2} \le x \le {1 \over 2}\)

Vậy tập xác định \(D = {\rm{[}} - {5 \over 2},{1 \over 2}{\rm{]}}\)

b) Hàm số đã cho xác định:

\(\eqalign{
& \Leftrightarrow {{{x^2} + 5x + 4} \over {2{x^2} + 3x + 1}} \ge 0 \Leftrightarrow {{(x + 1)(x + 4)} \over {(x + 1)(2x + 1)}} \ge 0 \cr
& \Leftrightarrow \left\{ \matrix{
x \ne - 1 \hfill \cr
{{x + 4} \over {2x + 1}} \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ne - 1 \hfill \cr
\left[ \matrix{
x \le - 4 \hfill \cr
x > - {1 \over 2} \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \le - 4 \hfill \cr
x > - {1 \over 2} \hfill \cr} \right. \cr} \) 

Vậy tập xác định của hàm số là: \(S = ( - \infty , - 4{\rm{]}} \cup ( - {1 \over 2}, + \infty )\)

Copyright © 2021 HOCTAP247