a) Nếu α âm thì ít nhất một trong các số cosα, sinα phải âm.
b) Nếu α dương thì \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } \)
c) Các điểm trên đường tròn lượng giác xác định bởi các số thực sau trùng nhau:
\({\pi \over 4};\,\, - {{7\pi } \over 4};\,\,{{13\pi } \over 4};\,\, - {{17\pi } \over 4}\)
d) Ba số sau bằng nhau: \({\cos ^2}{45^0};\,\,\sin({\pi \over 3}\cos {\pi \over 3}) ;\,\,\, - \sin {210^0}\)
e) Hai số sau khác nhau: \(\sin {{11\pi } \over 6};\,\,\sin ({{5\pi } \over 6} + 1505\pi )\)
f) Các điểm của đường tròn lượng giác lần lượt xác định bởi các số đo: \(0;\,{\pi \over 3};\,\pi ;\, - {{2\pi } \over 3};\, - {\pi \over 3}\) là các đỉnh liên tiếp của một lục giác đều.
a) Sai
Chẳng hạn \(\alpha = - {{7\pi } \over 4}\) thì cosα và sin α đều dương.
b) Sai
Chẳng hạn: \(\alpha = {{5\pi } \over 4}\) thì sinα < 0
c) Sai
Trên đường tròn lượng giác các điểm biểu diễn các số:
\({\pi \over 4};\,\, - {{7\pi } \over 4} = - 2\pi + {\pi \over 4};\,\, - {{17\pi } \over 4} = - 9.2\pi + {\pi \over 4}\)
Là trùng nhau nhưng không trùng với điểm biểu diễn số \({{13\pi } \over 4} = 3\pi + {\pi \over 4}\)
d) Đúng
Vì:
\(\eqalign{
& \cos^2 {45^0} = {1 \over 2} \cr
& \sin ({\pi \over 3}\cos {\pi \over 3}) = \sin ({\pi \over 3}.{1 \over 2}) = \sin {\pi \over 6} = {1 \over 2} \cr
& - \sin {210^0} = - \sin ({180^0} + {30^0}) = - ( - {1 \over 2}) = {1 \over 2} \cr} \)
e) Sai
Vì:
\(\eqalign{
& \sin {{11\pi } \over 6} = \sin (2\pi - {\pi \over 6}) = \sin ( - {\pi \over 6}) \cr
& \,\sin ({{5\pi } \over 6} + 1505\pi ) = sin(1506\pi - {\pi \over 6}) = \sin ( - {\pi \over 6}) \cr} \)
g) Đúng
Vì chỉ cần dựng lục giác đều nội tiếp đường tròn lượng giác với một đỉnh A và quan sát.
Copyright © 2021 HOCTAP247