a) \( - {\pi \over 3} + (2k + 1)\pi \)
b) kπ
c) \({\pi \over 2} + k\pi \)
d) \({\pi \over 4} + k\pi \,(k \in Z)\)
a) Ta có: \( - {\pi \over 3} + (2k + 1)\pi = {{2\pi } \over 3} + k2\pi \)
Ta có:
\(\eqalign{
& \sin ({{2\pi } \over 3} + k2\pi ) = \sin {{2\pi } \over 3} = {{\sqrt 3 } \over 2} \cr
& \cos ({{2\pi } \over 3} + k2\pi ) = \cos {{2\pi } \over 3} = - {1 \over 2} \cr
& \tan ({{2\pi } \over 3} + k2\pi ) = \tan {{2\pi } \over 3} = - \sqrt 3 \cr
& \cot ({{2\pi } \over 3} + k2\pi ) = \cot {{2\pi } \over 3} = - {{\sqrt 3 } \over 3} \cr} \)
b) Ta có
cos kπ = 1 nếu k chẵn
cos kπ = -1 nếu k lẻ
⇒cos kπ = (-1)k
c) Ta có:
\(\eqalign{
& \cos ({\pi \over 2} + k\pi ) = 0 \cr
& sin({\pi \over 2} + k\pi ) = {( - 1)^k} \cr
& cot({\pi \over 2} + k\pi ) = 0 \cr} \)
\(\tan ({\pi \over 2} + k\pi )\) không xác định
d) Ta có:
\(\eqalign{
& \cos ({\pi \over 4} + k\pi ) = {( - 1)^k}{{\sqrt 2 } \over 2} \cr
& \sin ({\pi \over 4} + k\pi ) = {( - 1)^k}{{\sqrt 2 } \over 2} \cr
& \tan ({\pi \over 4} + k\pi ) = \cot ({\pi \over 4} + k\pi ) = 1 \cr} \)
Copyright © 2021 HOCTAP247