Bài 15 trang 200 SGK Đại số 10 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Tìm các điểm của đường tròn lượng giác xác định bởi số α trong mỗi trường hợp sau:

a) \(\cos \alpha  = \sqrt {1 - {{\sin }^2}\alpha } \)

b) \(\sqrt {{{\sin }^2}\alpha }  = \sin \alpha \)

c) \(\tan \alpha  = {{\sqrt {1 - {{\cos }^2}\alpha } } \over {\cos \alpha }}\)

Hướng dẫn giải

a) Ta có:

\(\eqalign{
& \cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } \Leftrightarrow \cos \alpha = \sqrt {{{\cos }^2}\alpha } \cr
& \Leftrightarrow \cos \alpha \ge 0 \cr} \)        

⇔  M(x, y) thỏa mãn x2 + y2 = 1; x ≥ 0

b) Ta có:

\(\sqrt {{{\sin }^2}\alpha }  = \sin \alpha  \Leftrightarrow \sin \alpha  \ge 0\)

⇔  M(x, y) thỏa mãn x2 + y2 = 1; y ≥ 0

c) Ta có:

\(\tan \alpha = {{\sqrt {1 - {{\cos }^2}\alpha } } \over {\cos \alpha }} \Leftrightarrow \left\{ \matrix{
\sin \alpha \ge 0 \hfill \cr
\cos \alpha \ne 0 \hfill \cr} \right.\)

⇔  M(x, y) thỏa mãn x2 + y2 = 1, y ≥ 0; y ≠ 1

Copyright © 2021 HOCTAP247