Bài 1 trang 57 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Viết khai triển theo công thức nhị thức Niu - Tơn:
a) \({\left( {a{\rm{ }} + {\rm{ }}2b} \right)^5}\);                         

b) \({\left( {a{\rm{ }} - {\rm{ }}\sqrt 2 } \right)^6}\)                       

c) \({\left( {x - {1 \over x}} \right)^{13}}\)

Hướng dẫn giải

Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \,\,\left( {k \in Z} \right)\).

Trong trường hợp số mũ \(n\) khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.

Lời giải chi tiết

a) Theo dòng 5 của tam giác Pascal, ta có:

\({(a + 2b)^5} = {a^5} + 5{a^4}.2b + 10{a^3}.{(2b)^2} + 10{a^2}{(2b)^3}\)

\(+ 5a.{(2b)^4} + {(2b)^5}\)\(={a^5} + 10{a^4}b + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}\)

\(\begin{array}{l}
C2:\,\,\,{\left( {a + 2b} \right)^5} = \sum\limits_{k = 0}^5 {C_5^k{a^{5 - k}}{{\left( {2b} \right)}^k}} \\
= C_5^0{a^5} + C_5^1{a^4}{\left( {2b} \right)^1} + C_5^2{a^3}{\left( {2b} \right)^2}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + C_5^3{a^2}{\left( {2b} \right)^3} + C_5^4{a^1}{\left( {2b} \right)^4} + C_5^5{\left( {2b} \right)^5}\\
= {a^5} + 10{a^4} + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}
\end{array}\)

b) Theo dòng 6 của tam giác Pascal, ta có:

\({\left( {a - \sqrt 2 } \right)^6} = {a^6} + 6{a^5}\left( { - \sqrt 2 } \right) + 15{a^4}{\left( { - \sqrt 2 } \right)^2} \)

\(+ 20{a^3}{\left( { - \sqrt 2 } \right)^3} + 15{a^{^2}}{\left( { - \sqrt 2 } \right)^4} + 6a{\left( { - \sqrt 2 } \right)^5}\)

\(+ {\left( { - \sqrt 2 } \right)^6}\)\(={a^6} - 6\sqrt 2 {a^5} + 30{a^4}- 40\sqrt 2 {a^3}\)

\(+ 60{a^2} - 24\sqrt 2 a + 8\)

\(\begin{array}{l}
C2:\,\,{\left( {a - \sqrt 2 } \right)^6} = \sum\limits_{k = 0}^6 {C_6^k{a^{6 - k}}{{\left( { - \sqrt 2 } \right)}^k}} \\
= C_6^0{a^6} + C_6^1{a^5}{\left( { - \sqrt 2 } \right)^1} + C_6^2{a^4}{\left( { - \sqrt 2 } \right)^2}\\ \;\;\;\;+ C_6^3{a^3}{\left( { - \sqrt 2 } \right)^3}+ C_6^4{a^2}{\left( { - \sqrt 2 } \right)^4} \\\;\;\;\;+ C_6^5{a^1}{\left( { - \sqrt 2 } \right)^5} + C_6^6{\left( { - \sqrt 2 } \right)^6}\\
= {a^6} - 6\sqrt 2 {a^5} + 30{a^4} - 40\sqrt 2 {a^3} + 60{a^2}\\\;\;\;\; - 24\sqrt 2 a + 8
\end{array}\)

c) Theo công thức nhị thức Niu – Tơn, ta có:

\({\left( {x - {1 \over x}} \right)^{13}} = \sum\limits_{k = 0}^{13} {C_{13}^k{x^{13 - k}}{{\left( { - {1 \over x}} \right)}^k} }\)

                     \(=\sum\limits_{k = 0}^{13} {C_{13}^k{{( - 1)}^k}{x^{13 - 2k}}} \)

Nhận xét: Trong trường hợp số mũ \(n\) khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.

Copyright © 2021 HOCTAP247