Tìm hệ số của \(x^3\) trong khai triển của biểu thức: \({\left( {x + {2 \over {{x^2}}}} \right)^6}\).
Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \,\,\left( {k \in Z} \right)\)
Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \({x^m}.{x^n} = {x^{m + n}};\,\,\frac{{{x^m}}}{{{x^n}}} = {x^{m - n}}\).
Để tìm hệ số của \(x^3\) ta cho số mũ của x bằng 3, giải phương trình tìm \(k\)
Lời giải chi tiết
\({\left( {x + {2 \over {{x^2}}}} \right)^6} = \sum\limits_{k = 0}^{ 6} {C_6^k} .{x^{6 - k}}{\left( {{2 \over {{x^2}}}} \right)^k} = \sum\limits_{k = 0}^{ 6} {C_6^k} {.2^k}.{x^{6 - 3k}}\)
Trong tổng này, số hạng \(\sum\limits_{k = 0}^{ 6} {C_6^k} {.2^k}.{x^{6 - 3k}}\) có số mũ của \(x\) bằng \(3\) khi và chỉ khi: \(\left\{ \begin{array}{l}6 - 3k = 3\\k \in \left[ {0;6} \right]\end{array} \right. \Leftrightarrow k = 1\)
Do đó hệ số của \(x^3\) trong khai triển của biểu thức đã cho là: \(C_6^1.2^1 = 2.6 = 12\)
Copyright © 2021 HOCTAP247