Chứng minh các tính chất a), b) và c).
a) P(∅) = 0, P(Ω) = 1.
b) 0 ≤ P(A) ≤ 1, với mọi biến cố A.
c) Nếu A và B xung khắc, thì
P(A ∪ B) = P(A) + P(B) (công thức cộng xác suất).
Theo định nghĩa xác suất của biến cố ta có:
\(\eqalign{
& a)P(\emptyset ) = {{n(\emptyset )} \over {n(\Omega )}} = {0 \over {n(\Omega )}} = 0 \cr
& P(\Omega ) = {{n(\Omega )} \over {n(\Omega )}} = 1 \cr
& b)\,n(\emptyset ) \le n(A) \le n(\Omega ) \Rightarrow {{n(\emptyset )} \over {n(\Omega )}} \le {{n(A)} \over {n(\Omega )}} \le {{n(\Omega )} \over {n(\Omega )}} \cr
& \Rightarrow P(\emptyset ) \le P(A) \le P(\Omega ) \cr} \)
hay \(0 \le P(A) \le 1\) (từ chứng minh câu a)
c) Nếu A và B xung khắc, ta có:
\(\eqalign{
& n(A \cup B) = n(A) + n(B) \cr
& \Rightarrow {{n(A \cup B)} \over {n(\Omega )}} = {{n(A)} \over {n(\Omega )}} + {{n(B)} \over {n(\Omega )}} \cr
& \Rightarrow P(A \cup B) = P(A) + P(B) \cr} \)
Copyright © 2021 HOCTAP247