Bài 2 trang 97 SGK Hình học 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình tứ diện \(ABCD\). 

a) Chứng minh rằng: \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0.\)

b) Từ đẳng thức trên hãy suy ra rằng nếu tứ diện \(ABCD\) có \(AB ⊥ CD\) và \(AC ⊥ DB\) thì \(AD ⊥ BC\). 

Hướng dẫn giải

Sử dụng quy tắc ba điểm.

Lời giải chi tiết

a) \(\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}.(\overrightarrow{AD}-\overrightarrow{AC})\)

    \(\overrightarrow{AC}.\overrightarrow{DB}=\overrightarrow{AC}.(\overrightarrow{AB}-\overrightarrow{AD})\)

    \(\overrightarrow{AD}.\overrightarrow{BC}=\overrightarrow{AD}.(\overrightarrow{AC}-\overrightarrow{AB}).\)

Cộng từng vế ba đẳng thức trên ta được đẳng thức phải chứng minh.

b) \(AB ⊥ CD \Rightarrow \overrightarrow{AB}.\overrightarrow{CD}=0,\)

    \(AC ⊥ DB \Rightarrow \overrightarrow{AC}.\overrightarrow{DB}=0\)

Từ đẳng thức câu a ta có:

\(\Rightarrow\overrightarrow{AD}.\overrightarrow{BC}=0\Rightarrow AD ⊥ BC\).

Copyright © 2021 HOCTAP247