Trang chủ Lớp 7 Toán Lớp 7 SGK Cũ Bài 2. Hai đường thẳng vuông góc Đề kiểm tra 15 phút - Đề số 1 - Bài 2 - Chương 1 - Hình học 7

Đề kiểm tra 15 phút - Đề số 1 - Bài 2 - Chương 1 - Hình học 7

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Cho góc \(\widehat {AOB} = {60^o}.\) Trên cùng nửa mặt phẳng bờ OB chứa OA, vẽ tia Ox vuông góc với tia OB. Trên nửa mặt phẳng kia, vẽ tia Oy vuông góc với OA.

a) Chứng minh \(\widehat {AOx} = \widehat {BOy}.\)

b) Vẽ Ox’ là tia đối của tia Ox. Hãy tính \(\widehat {x'Oy}.\)

Hướng dẫn giải

a) \(OB \bot O x\) nên \(\widehat {xOB} = {90^o}.\)

Vì OA, Ox cùng nằm trên nửa mặt phẳng bờ OB và \(\widehat {AOB}

\( \Rightarrow \widehat {AOx} = {30^o}.\)

Ta có \(Oy \bot OA\) nên \(\widehat {AOy} = {90^o}.\) Vì OA và Oy nằm trên hai nửa mặt phẳng đối nhau có bờ là OB nên tia OB nằm giữa hai tia OA và Oy, ta có:

\(\widehat {AOB} + \widehat {BOy} = \widehat {AOy}\) hay \({60^o} + \widehat {BOy} = {90^o} \Rightarrow \widehat {BOy} = {30^o}.\)

Vậy \(\widehat {AOx} = \widehat {BOy} = {30^o}.\)

b) Vì Ox’ là tia đối của tia Ox nên \(\widehat {xOx'} = {180^o}.\) Ta có:

\(\widehat {xOA} + \widehat {AOB} + \widehat {BOy} + \widehat {yOx'} = {180^o}\)

\(\eqalign{ & {30^o} + {60^o} + {60^o} + \widehat {x'Oy} = {180^o}  \cr &  \Rightarrow \widehat {x'Oy} = {180^o} - {120^o} = {60^o}. \cr} \)

\widehat>

Copyright © 2021 HOCTAP247